GEOTECHNICAL STUDY FOR THE PROPOSED CITY HALL AND PARK DEVELOPMENT PLAN FOR THE ENVIRONMENTAL IMPACT REPORT (EIR), NEWPORT BEACH, CALIFORNIA

Prepared for:

CITY OF NEWPORT BEACH

3300 Newport Boulevard Newport Beach, California 92663

Project No. 602184-002

July 6, 2009

Leighton Consulting, Inc.

July 6, 2009

Project No. 602184-002

To:	City of Newport Beach
	3300 Newport Boulevard
	Newport Beach, California 92663

Attention: Mr. Steven Badum

Subject: Geotechnical Study for the Proposed City Hall and Park Development Plan for the Environmental Impact Report (EIR), Newport Beach, California

Leighton Consulting, Inc. is pleased to submit this report to present the results of our geotechnical exploration for the proposed project. Our services were provided in accordance with our proposal dated February 6, 2009 and your subsequent Notice to Proceed. The report is intended to be used to support the Environmental Impact Report which will be prepared by others. Leighton Consulting prepared a due-diligence geotechnical report in 2008 (Leighton, 2008) for the proposed City Hall.

We understand that a city hall building, a parking structure, a park, and other improvements are planned. We prepared this report based on a schematic site plan showing the preliminary locations of these structures and improvements. Based on the preliminary information, the site is anticipated to be lowered to reach the design grades. A retaining wall is also planned along MacArthur Boulevard along the east side of the proposed parking structure.

Based on the results of our exploration, the site is underlain by Quaternary age terrace deposits over bedrock of Monterey Formation with artificial fill anticipated to be encountered in the southernmost portion of the site. Adverse bedrock structure was observed within the bucket auger boring. Therefore, geologic surcharge should be considered during design of the retaining wall and other temporary shoring systems. The proposed buildings may be supported on conventional spread footings and slab-on-grade foundation systems founded on bedrock or compacted structural fill where a bedrock-artificial fill or bedrock-terrace deposit transition is encountered. The proposed project is deemed feasible from a geotechnical standpoint. This report presents the findings from our exploration and evaluation of the site. Aspects of the site that may be of significance for design and construction are discussed in this report. In addition, preliminary recommendations have been provided for design, but some additional field exploration and engineering analysis are considered to be necessary before completing the final design.

We appreciate the opportunity to be of service to you on this project. If you have any questions or if we can be of further assistance, please call us at your convenience.

Respectfully submitted,

LEIGHTON CONSULTING, INC.

Vivian M. Cheng, PE 67879 Project Engineer

Edward L. Burrows, PG, CEG 1750 Director of Geology

Reviewed by:

John E. Haertle, PE, GE 2352 Senior Project Engineer

VMC/ELB/JEH/lr

Distribution: (5) Addressee

TABLE OF CONTENTS

Section	<u>1</u>	Page
1.0	INTRODUCTION1	
	1.1 1.2	Site Description and Proposed Improvements
2.0	GEOLC	GIC SETTING
3.0	SUBSU	RFACE AND GROUNDWATER CONDITIONS
	3.1 3.2 3.3 3.4 3.5	Subsurface Conditions6Groundwater Conditions7Percolation Characteristics8Expansion Potential8Slope Stability9
4.0	FAULTING, SEISMICITY AND POTENTIAL HAZARDS1	
	4.1 4.2	Alquist-Priolo Earthquake Fault Zone and Nearby Faults
5.0	CONCL	USIONS AND RECOMMENDATIONS14
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12	Site Grading14Excavation Stability and Shoring Requirement152007 California Building Code (CBC) Seismic Coefficients17Spread Footing Foundations17Slab-on-Grade18Earth Retaining Structures19Subterranean Floor Slab Drainage21Corrosion Protection Measures21Surface Drainage21Pavement Design22Additional Geotechnical Services22Limitations23
6.0	REFER	ENCES

Important Information About Your Geotechnical Engineering Report

Illustrations and Appendices

Figure 1 – Site Location Map Figure 2 – Retaining Wall Backfill and Subdrain Details

Plate 1 – Boring Location Map Plate 2 – Geologic Cross-Section A-A' Plate 3 – Geologic Cross-Section B-B'

Appendix A– Boring and Test Pit Logs Appendix B – Laboratory Test Results Appendix C – Agricultural Laboratory Test Results Appendix D – Percolation Test Results Appendix E – Seismic Analyses Results Rear of Text Rear of Text

Rear of Report Rear of Report Rear of Report

1.0 INTRODUCTION

1.1 <u>Site Description and Proposed Improvements</u>

The site for the proposed city hall and park development plan is approximately 20 acres in size and is located between Avocado Avenue and MacArthur Boulevard in the city of Newport Beach, California. The proposed project site consists of three (3) parcels, referred to as the Northern, Central, and Southern parcels. The Northern parcel (3.24acres) and the Central parcel (12.82-acres) are currently vacant and are separated by San Miguel Road. The Southern parcel (4.0-acres) is currently occupied by the existing Newport Beach Public Library located at 1000 Avocado Avenue. The library will remain after the proposed project implementation. The locations of the three parcels are shown on Figure 1, Site Location Map. The current site elevations range from approximately El. +130 to +210 feet mean sea level (msl) south of San Miguel Drive and approximately El. +210 to +250 feet msl north of San Miguel Drive. Light vegetation is present within both of the vacant Northern and Central parcels. Some heavy vegetation, bushes and a ravine are present within the northern area of the Central parcel.

We understand that the proposed city hall building and parking structure are planned within the southern portion of the Central parcel. The remaining area of the Central parcel as well as the Northern parcel are planned to be utilized as public park areas, with a portion of the Northern parcel planned as a dog park. A pedestrian bridge is proposed to link the Northern and Central parcels over San Miguel Road. Several other pedestrian bridges and other flatwork and landscape improvements are proposed in the park area of the Central parcel.

Based on our current understanding of the project plan, both the future City Hall building and parking structure will be rectangular in shape with finished floor elevations ranging from approximately El. +144 to +154 feet msl, except for the proposed Emergency Operations Center (EOC) that is planned in the southern region of the Central parcel that will have a finished floor elevation of approximately El. +130 feet msl. As such, significant grading, with cuts up to 20 to 40 feet, will be performed during construction. As the future parking structure will be lower than the adjacent MacArthur Boulevard, the eastern side of the parking structure will act as a retaining wall with a height anticipated to be similar to the height of the proposed cut that will be constructed adjacent to MacArthur Boulevard.

We understand that the project will also include expansion of the Central Library located in the Southern parcel. The addition to the library will be two stories in height located along the northern side of the existing building. The second floor of the addition will include pedestrian access to the proposed City Hall building via an enclosed corridor. The first floor of this addition will include storage space and a mechanical room. The first floor of the addition will be level with the ground/first floor of the existing library.

An access road is also planned to connect the Central Library to the future City Hall site and parking structure. Geotechnical evaluation of the site for this report has been based on the conceptual design sketches that depict the proposed locations of the improvements. Alterations to the preliminary design plans should be provided for our review and use prior to implementing the additional recommended field exploration and geotechnical analyses.

1.2 <u>Purpose and Scope of Exploration</u>

The purpose of our geotechnical exploration was to provide geotechnical recommendations and input for the Environmental Impact Report (EIR) of the proposed project. The exploration was performed in accordance with our proposal dated February 6, 2009 and your subsequent Notice to Proceed. Our current exploration is based on the preliminary design schematic plans provided to us and is anticipated to be used to support the EIR documents. A design-level geotechnical exploration should be performed after the final building locations and grading plans are available.

The scope of this exploration included the following tasks:

- <u>Site Reconnaissance</u> Coordinate with C.W. Driver and LSA to perform a site reconnaissance to locate the proposed boring locations. We also identified any geologic hazards and evaluate access for drilling equipment.
- <u>Background Review</u> Perform a background review of readily available, relevant, geotechnical and geological literature pertinent to the site.
- <u>*Pre-field Exploration Activities*</u> Contact Underground Service Alert (USA) to locate and mark existing underground utilities prior to our subsurface explorations.
- <u>*Geologic Mapping*</u> Perform preliminary level surficial geologic mapping at the site to visually identify any exposed geologic contacts along existing slopes.

- <u>*Field Explorations*</u> Perform subsurface exploration on March 4, 5, 6, 10, 2009. All locations of the borings were determined by the project team during the site reconnaissance. An archeologist was on-site providing full-time monitoring during the course of our exploration. The field exploration consisted of the following:
 - Drill eight (8) hollow-stem auger borings to approximately 37 feet to 80 feet below current ground surface. Groundwater monitoring wells were installed in two (2) of the borings. The borings were logged by a member of our technical staff.
 - Drill one (1) bucket auger boring to approximately 64 feet below current ground surface. The bucket auger boring was downhole logged by a Certified Engineering Geologist.
 - Advance five (5) hand auger borings to approximately 3.5 feet below current ground surface. The borings were logged by a member of our technical staff.

Relatively undisturbed soil samples were obtained at selected intervals within the hollow-stem and bucket auger borings using a modified-California ring sampler. Standard Penetration Tests (SPT) were conducted at selected intervals within the hollow-stem auger borings. Bulk and grab samples of representative soil types were collected with all borings for geotechnical laboratory testing and agricultural testing.

The logs of borings of our current exploration and our 2008 exploration are presented in Appendix A. Exploration test locations are shown on Plate 1, Boring Location Map.

- <u>Laboratory Tests</u> Perform laboratory tests on selected soil samples obtained during our field exploration. The laboratory testing program was designed to evaluate the physical and engineering characteristics of the subsurface materials. Laboratory tests performed for this exploration include:
 - In situ moisture content and dry density;
 - Direct shear;
 - Unconfined Compressive Test;
 - Atterberg Limits;
 - Grain Size analyses;
 - Expansion Index;

- R-Value; and
- Corrosion (resistivity, pH, chloride content, and sulfate concentration).

The results of the in situ moisture and density tests are shown on the boring logs in Appendix A. Results of all laboratory tests are presented in Appendix B.

Agricultural tests were also performed on 78 grab samples. The tests were performed by Wallace Laboratory. The results of the agricultural tests are included in Appendix C.

- <u>Engineering Analysis</u> Evaluate and analyze data obtained from our background review, field exploration, preliminary geologic field mapping, and laboratory testing program to develop recommendations for the proposed improvements based on the current available plan.
- <u>*Report Preparation*</u> Prepare a report summarizing the results of our exploration presenting our findings, conclusions and recommendations for the proposed project.

2.0 GEOLOGIC SETTING

The project site is on the northwestern flank of the northern San Joaquin Hills. The San Joaquin Hills lie within the northern part of the Peninsular Ranges geomorphic province which extends 900 miles southward from the Santa Monica Mountains to the tip of Baja California (Yerkes et al., 1965). Regional tectonic activity has uplifted the San Joaquin Hills into an elongated arched fold (anticlinorium) trending to the northwest from San Juan Capistrano and Huntington Mesa. This anticlinal folding has occurred as this entire section of the southern California coast was uplifted by the San Joaquin Hills blind thrust fault (Grant et al., 1997, 1999, and 2002; Mueller et al., 1998). The San Joaquin Hills expose mainly Tertiary aged marine and non marine sedimentary rocks including thinly bedded shale, siltstone and sandstone of the upper Miocene-age Monterey Formation.

During Quaternary times, the eustatic fluctuations in sea level formed broad wave cut platforms upon which marine terrace sediments were deposited. Due to the continued uplift of the San Joaquin Hills some of these ancient stepped sequences of marine terrace deposits have been elevated above present day sea level. Erosion and grading activity have formed the present day landscape.

3.0 SUBSURFACE AND GROUNDWATER CONDITIONS

3.1 <u>Subsurface Conditions</u>

A portion of the site is underlain by terrace deposits over bedrock. Quaternary terrace deposits at the site consist of varying amounts of sand, silt and clay. In general, the terrace deposits are medium dense to very dense granular soils and stiff to hard cohesive soils. A portion of the site is also underlain by Tertiary age Monterey Formation bedrock which was also encountered beneath the terrace deposits. The bedrock at the site consists of sandstone and siltstone. Bedrock was encountered at depths ranging from 0 to 9 feet below ground surface (bgs) at our exploration locations (approximately El. +161 and +250 feet msl) depending on the location of each exploration. Based on the current project plan for the proposed city hall building and parking structure in the Central parcel, the finish site grade will range from approximately El. +144 to +154 feet msl except where the EOC and library expansion are planned, which will be at approximately +130 feet msl. We anticipate that bedrock will be exposed within the majority of the site after grading. Depending on the final design profile, an artificial fill-bedrock transition may be encountered along the southern portion of the Central parcel.

During our downhole logging within the bucket auger boring that was drilled as part of the recent field exploration, sandstone with thin silt beds or clay beds was observed at various depths. Our measurement of the bedrock structure indicated that the majority of the bedding is dipping in an adverse direction (i.e. unfavorable) out-of-slope along the proposed retaining wall alignment.

Based on our recent geologic mapping at the site, we anticipate that artificial fill exists in the southern portion of the Central parcel. The fill is expected to comprise the slope that descends toward the existing library. The limits and depth of the artificial fill are unknown at this time. We also observed weathered bedrock to be exposed in the southern portion of the Central parcel in an area that appears to have been recently graded to some degree (perhaps as a borrow site). Bedrock was also observed at various locations along the perimeter of the Central parcel on the slope that descends toward MacArthur Boulevard. Weathered bedrock was also observed in the small ravines associated with the main drainage divide that cuts through the Central parcel.

Geologic cross-sections showing the subsurface conditions at the site are included on Plates 2 and 3. The subsurface stratigraphy is based on our observations from the borings, preliminary surficial geologic mapping, and our interpretation of the earth units between soil boring locations. Previous subsurface exploration data (boring and trench

logs) from our 2008 investigation has been revised where appropriate to reflect our current understanding of site geologic conditions.

3.2 Groundwater Conditions

Groundwater was encountered between approximately 45 to 67.2 feet below current ground surface during our exploration (between El. +117.7 and +131 feet msl) depending on the exploration location. The groundwater profile at the site is shown on Plates 2 and 3. In general, the groundwater elevation is higher in the northern region of the site (e.g. 45 feet bgs/El. +131 msl at Boring B-6) and gently slopes down towards the Central Library. Based on our measurements from the two groundwater monitoring wells south of the ravine, the water level has risen since the initial exploration, and has been fairly constant throughout the 3-month period after the field exploration (see below table). Groundwater was measured to be at approximately 46 and 42 feet below ground surface (El. +130 and +140 feet msl) at NB-5 and NB-8, respectively between March 10 and May 13, 2009 as summarized in the following table.

Date	Elevation at Top of Well (feet msl)		Groundwater Level below Top of Well (feet bgs)		Groundwater Elevation (feet msl)	
	NB-5	NB-8	NB-5	NB-8	NB-5	NB-8
March 10, 2009	+177	+183	52.5	57.2	+124.5	+125.8
(during drilling)						
March 10, 2009	+ 177	+ 183	46.2	42.6	+ 130.8	+ 140.4
(after well installation)						
March 18, 2009	+ 177	+ 183	46.1	42.5	+ 130.9	+ 140.5
March 31, 2009	+ 177	+ 183	46.2	42.6	+ 130.8	+ 140.4
May 13, 2009	+ 177	+ 183	46.2	42.6	+ 130.8	+ 140.4

Groundwater is not anticipated to be encountered during excavation in most of the areas; however, perched water and seepage may occur within the terrace deposits, the contact between terrace deposits and underlying bedrock, and/or within sandstone units on the bedrock. Groundwater may be encountered during excavation of the EOC and near the Central Library area, which has a proposed finished grade at approximately El. +130 feet msl. We recommend that additional monitoring wells be located at the southern end of the Central Parcel to determine the actual depth to groundwater in this area. If groundwater is encountered at a depth that would impact proposed grading then groundwater sampling is recommended to determine possible disposal methods during

and post-construction as necessary. Mitigation methods for groundwater encountered during grading could include a dewatering program. Mitigation methods for long term/post construction groundwater could include design of subterranean structures to resist hydrostatic pressures construction measures to included water stops to "seal off" the affected parts of the structures from groundwater penetration or the construction of a permanent subsurface drainage system, typically consisting of interior and exterior perimeter footing drains and sub-floor laterals that drain to a central sump which is then either pumped or flow by gravity to the storm drain or suitable discharge point. Implementation of appropriate mitigation measures would result in less than significant impacts related to groundwater.

3.3 <u>Percolation Characteristics</u>

A percolation test was performed within boring NB-7. Based on our current understanding of the project, the location was selected by the project team as a possible area for infiltration devices that utilize the upper five feet of the proposed grades. The recommendations in this report should be re-evaluated if the final design grade is significantly different from the above assumptions. Results of the percolation test are included in Appendix D.

The percolation test was performed at a depth of approximately 37 feet below current grade (El. +125 feet msl). Bedrock of the Monterey formation was exposed at the bottom of the percolation test hole. The results of our test indicated that the bedrock at the tested depth has a percolation rate of less than 0.02 gallon per day per square foot (gal/day/sq.ft.). Therefore, an on-site infiltration system may not be feasible. Further percolation tests may be performed after grading to determine if other areas at the site are suitable for an on-site infiltration system.

3.4 Expansion Potential

Based on the laboratory test results, the onsite soils have an Expansion Index ranging from 0 to 29, indicating a very low to low expansion potential in accordance with Table 18-1-B of the California Building Code (CBC, 2007). However, the bedrock onsite includes strata of claystone which may be potentially expansive. Additional Expansion Index tests should be performed to confirm the expansiveness of the claystone. Completion of subsequent design level studies to be prepared when detailed grading and

building plans are available and implementation of the recommendations from these reports would result in less than significant impacts related to expansive soils.

3.5 <u>Slope Stability</u>

Natural slopes are present on the site within the ravine area. Subsurface exploration was not performed within this area for this study. Slope stability and mitigation measures along the natural slope will be presented upon completion of subsequent design level studies. Implementation of the recommendations in these reports would result in less than significant impacts related to natural slope stability.

The majority of the graded slopes along the perimeter of the project site (along Avocado Boulevard and southern area of the Central parcel) will be removed during grading. Therefore no significant slope stability issues are anticipated within the existing graded slopes.

4.0 FAULTING, SEISMICITY AND POTENTIAL HAZARDS

4.1 <u>Alquist-Priolo Earthquake Fault Zone and Nearby Faults</u>

Our review of available in-house literature indicates that no known active faults have been mapped across the site, and the site is not located within an Alquist-Priolo Earthquake Fault Zone (CDMG, 1977). Based on our review, we consider the potential for surface fault rupture at the site to be low.

A list of the historic earthquakes from 1800 to 1999 within 100 miles of the site, based on Cambell and Bozorgnia (1997, Rev.) soft rock attenuation relationship, is included in Appendix E. The computer program EQSearch Version 3.00a was used to generate the list.

The closest fault to the site is the Newport Inglewood (Offshore) fault, located at approximately 2.4 miles from the site. San Joaquin Hills Blind Thrust is located less than 3.5 miles from the site. The San Andres fault is the largest fault in the region and is located approximately 52.7 miles from the site. Both active and potentially active faults found within a 62-mile (100 km) radius from the project site are listed in Appendix E. Descriptions of the Newport-Inglewood fault and San Joaquin Hills blind thrust are provided in the following paragraphs:

Newport-Inglewood Fault - Located approximately 2.4 miles southwest of the subject site, the Newport-Inglewood fault consists of a series of parallel and en-echelon (sidestepping), northwest-trending faults and folds that extend from the southern edge of the Santa Monica Mountains southeast to the offshore area of Newport Beach. This zone has a history of moderate to high seismic activity and has produced numerous earthquakes greater than magnitude 4.0, including the March 11, 1993 magnitude 6.3 Long Beach earthquake (which was actually centered near Newport Beach). At the time of the 1993 earthquake, secondary effects of strong ground shaking including sand boils, ground fissures, and liquefaction were noted in the city of Long Beach as well as in the city of Huntington Beach along Pacific Coast Highway near the Huntington Beach Pier and in the Bolsa Chica area. In addition, subsurface fault displacement of a few inches was documented following the October 21, 1941 earthquake (magnitude 4.9) and the June 18, 1944 earthquake (magnitude 4.5), both of which occurred along the Newport-Inglewood fault in the Dominguez Hills area (Barrows, 1974). Various segments of the Newport-Inglewood fault have been included within the boundaries of an Alquist-Priolo fault rupture hazard zone.

<u>San Joaquin Hills Thrust Fault</u> - Although not exposed at the surface, it is estimated that an upward projection of the dipping fault plane would intersect the ground surface at a location approximately 3.5 miles to the southeast of the subject site. Recent studies by various researchers have suggested that the hilly terrain that characterizes the San Joaquin Hills in central and southern Orange County is the result of late Quaternary folding associated with tectonic uplift along an active thrust fault. Recognition of this potentially seismogenic blind thrust extents the known area of active blind thrust and fault-related folding present in Los Angeles County southward into coastal Orange County (Grant, et. Al., 1999). Recent blind thrust earthquakes, including the 1987 magnitude 5.9 Whittier Narrows and the 1994 magnitude 6.7 Northridge events, have demonstrated the significance of these features with respect to the tectonic setting of southern California. Although the San Joaquin Hills thrust has not seen observed directly at the surface, structural modeling indicates that this fault has a slip rate of approximately 0.5 millimeters per year that yields a recurrence interval of 1,650 to 3,100 years for moderate-sized earthquakes.

4.2 <u>Potential Seismic Hazards</u>

<u>Ground Shaking</u> - The intensity of ground shaking resulting from an earthquake is generally characterized by using the Peak Horizontal Ground Acceleration (PHGA). To take into consideration the impact of regional faults, a probabilistic seismic hazard analysis was performed using the computer program FRISKSP (Blake, 2000) to estimate the PHGA that could occur at the site. This approach accounts for site-specific response characteristics, historical seismicity, and the geological characteristics of the regional faults under consideration. Three attenuation relationships (Abrahamson and Silva, 1997, Bozorgnia et al., 1999, and Sadigh et al., 1997) were used in the analysis. The results of the analyses suggest that the PHGA with a 2 percent probability of exceedance in 50 years (recurrence interval of 2,475 years) is approximately 0.70g. This level of ground motion is considered the Maximum Considered Earthquake (MCE) in accordance with the 2007 California Building Code (CBC). Results of the analyses are included in Appendix E.

Ground shaking is considered a potentially significant impact to the proposed project. Surface fault rupture is not expected to occur because the project site is not located within an Alquist-Priolo Earthquake Fault Zone.

<u>Liquefaction Potential</u> - Liquefaction is the loss of soil strength or stiffness due to a build up of pore-water pressure during severe ground shaking. Liquefaction is associated primarily with loose (low density), saturated, fine- to medium-grained, cohesionless soils. Effects of severe liquefaction can include sand boils, excessive settlement, bearing capacity failures, and lateral spreading. The site is not located within a potential liquefaction hazard zone as delineated by the State of California (CDMG, 1998). The site is underlain predominantly by shallow terrace deposits over bedrock. The depth to bedrock at the site ranges from 0 feet to 9 feet below current grade, and no significant amounts of loose granular soils were found within the terrace deposits. At such, we consider the potential of liquefaction at the site to be very low.

<u>Seismically-Induced Settlement</u> - Seismically-induced settlement occurs primarily within loose to moderately dense sandy soil due to a reduction in volume during and shortly after strong ground shaking. The majority of materials underlying the site consist of dense terrace deposits and bedrock. Accordingly, the potential for seismically-induced settlement is low.

Earthquake-Induced Lateral Spreading - Liquefaction may also cause lateral spreading. For lateral spreading to occur, the liquefiable zone must be continuous, unconstrained laterally, and free to move along a gently sloping surface toward an unconfined area. Since the site has a very low liquefaction potential, the potential for lateral spreading to occur at the site is considered very low.

<u>Seismically-Induced Landslides</u> - The site is not located in an area mapped as potentially susceptible to seismically-induced landslides as shown on the Seismic Hazard Zones Map (CDMG, 1998). The site has graded slopes along the perimeter descending to the adjacent streets (Avocado Street, MacArthur Boulevard and San Miguel Road). In addition, there are smaller natural slopes within the central portion of the site related to the east-west trending drainage. However, no significant slopes (greater than 30 feet in height) are located near the site. Therefore the potential of seismically induced landslides at the site is considered low.

<u>Seismically-Induced Flooding</u> - Earthquake-induced flooding can be caused by failure of dams or other water-retaining structures as a result of earthquake. The Central parcel contains a ravine area in the northern portion of the parcel which is considered a wetland area; however, this is not considered a water-retaining structure that would retain a significant amount of water. The Big Canyon Reservoir is located approximately one mile east of the subject site. The natural drainage course for the reservoir is to the

northwest towards the Big Canyon golf course. Based on the above, the potential of flooding at the site is considered low.

<u>Seiches and Tsunamis</u> - Seiches are large waves generated in enclosed bodies of water in response to ground shaking. Based on the lack of nearby enclosed water bodies near the site, the seiche risk at the site is considered negligible. Tsunamis are waves generated in large bodies of water by fault displacement or major ground movement. The lowest finished grade of the proposed project site will be at an elevation of approximately El. +130 feet msl, therefore the tsunami risk at the site is considered low.

5.0 CONCLUSIONS AND RECOMMENDATIONS

The proposed project is feasible from a geotechnical standpoint provided that the recommendations presented in this report are properly incorporated in subsequent phases of planning and preliminary design of the project. It is our understanding that the finish grade (including subterranean project features) will be approximately 20 to 40 feet lower than the current site grade. Where the site is adjacent to MacArthur Boulevard, the eastern side of the proposed parking structure will act as a retaining wall. Shoring will be required to be installed prior to excavation. As adverse bedrock structure was observed within the bucket auger boring, the retaining wall should be designed to include possible geologic surcharge from the bedrock. Additional exploration is recommended in the area of the proposed parking structure retaining In order to provide specific recommendations for this area, implementation of these wall. recommendations would result in less than significant impacts related to adverse bedrock structure. In general, the proposed city hall building, parking structure, library expansion, and structural elements of the park area may be supported on shallow foundations founded on bedrock or properly compacted fill. However, the proposed pedestrian bridges in the park area and the proposed pedestrian bridge crossing over San Miguel Road may require a deepened foundation system depending on the structural requirement.

Recommendations provided herein are for planning and design of the project at this EIR level of evaluation. Additional exploration and relevant engineering analysis should be performed after the building locations and footprints have been selected and preliminary grading plans are available to provide recommendations for final design.

5.1 Site Grading

Based on the currently planned finished floor elevations within the proposed City Hall and associated parking structures, we anticipate that majority of the terrace deposits and artificial fill will be removed during grading and bedrock will be exposed at the excavation bottoms. No significant overexcavation and removal is anticipated where bedrock is exposed. However, due to the variability in the degree of weathering of the bedrock, some remedial overexcavation and recompaction of the bedrock may be required in the areas of shallower cut to develop relatively uniform bearing conditions.

An artificial fill-bedrock transition may be encountered at the southern end of the Central parcel where the library expansion is planned. The subgrade below the planned foundations for buildings and improvements planned in this area should be overexcavated in order to provide uniform support for the buildings. The depth and lateral extent of overexcavation is anticipated to range from 2 to 5 feet based on the available subsurface

data, but will depend on the final building configuration and the actual subsurface profile in this area of the site.

The bedrock formation includes strata of claystone which may be potentially expansive. In areas where such materials are exposed in the subgrade or exist at shallow depth, some additional remedial grading may be warranted to develop relatively uniform support characteristics and reduce the potential for post-construction swell and distortions to the building.

Groundwater is not expected to be encountered during grading. However, perched water or seepage may be encountered. Groundwater may be encountered during excavation of EOC and the subterranean portion of the parking structure. If groundwater is encountered at a depth that would impact proposed grading then groundwater sampling is recommended to determine possible disposal methods during and post-construction as necessary. Mitigation methods for groundwater encountered during grading could include a dewatering program. Mitigation methods for long term/post construction groundwater could include design of subterranean structures to resist hydrostatic pressure and construction measures to "seal off" the affected parts of the structures from groundwater penetration or the construction of a permanent subsurface drainage system consisting of interior and exterior perimeter footing drains and subfloor laterals that collect groundwater and discharge to a central sump.

The onsite soil, free of organic material, cobbles, boulders, debris, and rock no larger than 6 inches in largest dimension, is suitable for use as compacted fill. Import soil, if required, should be evaluated and tested by the geotechnical consultant before delivery to the site. In general, fill material should be low in expansion potential, non-organic, and free of debris or other deleterious materials. As the site is anticipated to be graded 20 to 40 feet lower than the current elevation, export of excavated soil should be anticipated.

5.2 Excavation Stability and Shoring Requirement

The terrace deposits and bedrock at the site should be readily excavated by conventional earth-moving equipment in good working condition. Based on the nature of the on-site materials, excavations can be laid back in accordance with OSHA requirements before personnel are allowed to enter. Shoring will be required where there is space constraint for excavation lay back. It is the contractor's responsibility to ensure the stability of cuts, and the safety of all excavations.

Shoring will be required during excavation for the retaining wall due to the anticipated space constraint for slope lay back. Based on our observation in the bucket auger boring, the bedrock structure includes bedding that dips (slope) toward the general alignment of the proposed retaining wall and/or the eastern wall of the proposed parking structure building. In addition, the bedrock includes thin seams of clay and silt that are lower in strength than the sandstones that typically comprise the bedrock. These clay and silt seams present potential slip surfaces upon which overlying masses of bedrock may slide and impose additional load upon the proposed structure. Therefore, geologic surcharge from the bedrock and possibly the live traffic loading of MacArthur Boulevard will be imposed on the temporary shoring and the permanent retaining wall.

As the magnitude of the loading will be dependent on the dip angle of the bedrock along the entire wall alignment, we recommend additional bucket auger borings be performed along the proposed wall alignment to better evaluate the geologic structure and the presence of silt and clay seams. Design parameters of the temporary shoring and retaining wall will be based on the bedrock strike and dip within all three bucket auger borings and the final configuration of the wall. Shoring systems feasible for the site are expected to include cantilever shoring such as soldier piles and lagging in conjunction with tiebacks in areas when the depth of excavation exceeds 10 to 15 feet.

All temporary excavations should be treated in accordance with the State of California version of OSHA excavation regulations, Construction Safety Orders for Excavation General Requirements. The sides of excavations should be shored or sloped in accordance with OSHA regulations. OSHA allows the sides of unbraced excavations, up to a maximum height of 20 feet, to be cut to a ³/₄H:1V (horizontal:vertical) slope for Type A soils, 1H:1V for Type B soils, and 1¹/₂H:1V for Type C soils.

The onsite soils (Terrace Deposits) within the proposed excavation depths generally conform to OSHA soil Type B. The formational bedrock may be classified as Soil Type A but will require careful evaluation by the project Certified Engineering Geologist. The Type A classification is not recommended where adverse (out-of-slope) bedding orientations exist and special, site specific design parameters will be required in those areas. Implementation of these design parameters would result in less than significant impacts to the project

OSHA regulations are applicable in areas with no restriction of surrounding ground deformations. Shoring should be designed for areas with deformation restrictions. The soil type should be verified or revised based on geotechnical observation and testing during construction, as soil classifications may vary over short horizontal distances.

Heavy construction loads, such as those resulting from stockpiles and heavy machinery, should be kept a minimum distance equivalent to the excavation height or 5 feet, whichever is greater, from the excavation unless the excavation is shored and these surcharges are considered in the design of the shoring system.

5.3 <u>2007 California Building Code (CBC) Seismic Coefficients</u>

This site is not located within a designated Alquist-Priolo Earthquake Fault Zone. However, strong ground shaking due to seismic activity is anticipated at the site. The following values are based on the 2007 CBC seismic design method. Additional seismic analyses may be necessary based on structural requirements.

California Building Code (2007) Seismic Parameters		
Site Class	С	
Mapped Spectral Acceleration Parameter, S _s	1.783	
Mapped Spectral Acceleration Parameter, S ₁	0.653	
Site Coefficient, F _a	1.0	
Site Coefficient, F _v	1.3	
Spectral Response Acceleration, S _{MS}	1.783	
Spectral Response Acceleration, S _{M1}	0.849	
Design Spectral Response Acceleration, S _{DS}	1.188	
Design Spectral Response Acceleration, S _{D1}	0.566	

5.4 <u>Spread Footing Foundations</u>

Upon completion of the grading (cutting) required to establish the proposed building pad elevations, the proposed structures may be supported by a spread footing foundation system. Recommended bearing capacities will be dependant on the final foundation elevation and structural loadings of the buildings. Based on the current project plan, the finish grade will be at approximately 20 to 40 feet below current ground surface. A maximum net allowable soil bearing pressure in the range of 3,000 to 5,000 psf for square pad footings and continuous strip footings can be used for preliminary design. Specific design recommendations can be provided once the final project plan is available.

On a preliminary basis, the footings should have minimum widths of 2 feet and 1.5 feet for isolated square pad and continuous strip footings, respectively, with the top of the

footing embedded at least 18 inches below the lowest adjacent grade. The soil bearing pressure may be increased by one-third for transient loads such as wind and seismic forces.

The post-construction total and differential static settlements will be provided once the grading plan and structural loads are available.

Resistance to lateral loads will be provided by a combination of friction between the soil and foundation interface and passive pressure acting against the vertical portion of the footings. For calculating lateral resistance, a passive pressure of 350 psf per foot of depth to a maximum of 3,500 psf and a frictional coefficient of 0.35 may be used provided the foundations are supported within competent bedrock or structural compacted fill as previously described assuming a drained condition. A passive pressure of 250 psf/ft depth to a maximum of 2,500 psf should be used for a submerged condition. When combining frictional and passive resistance, the passive resistance should be reduced by one-third. No safety factor has been incorporated in the recommended values for frictional and passive resistance. The appropriate load factors should be used by the structural engineer in design.

We understand from the structural engineer that tiedown anchors will be installed on the building foundation to provide uplift resistance to the steel framed building. Based on the preliminary foundation details prepared by ARUP dated December 4, 2008, the unbonded length of the tiedown is 15 feet. The bonded length of the tiedown is not provided on the plan. Assuming a minimum unbonded length of 15 feet and a minimum bonded length of 10 feet into competent bedrock, a unit ultimate uplift resistance of 500 psf can be used. The bonded length should be designed by the structural engineer based on the actual structural loading demand. No factor of safety is incorporated in the above uplift resistance.

5.5 <u>Slab-on-Grade</u>

At-grade floor slabs of the proposed structures may be designed and constructed as a slab-on-grade supported directly on properly compacted fill or competent bedrock. If a bedrock artificial fill transition is encountered, the planned subgrade elevation should be overexcavated at least 3 feet and replaced with properly compacted fill. If bedrock claystone is encountered at the planned subgrade elevation, additional Expansion Index testing should be performed to determine the necessity and/or extent of overexcavation or other floor slab systems (e.g. post-tensioned slab) may be required. The structural

engineer should design the slab and determine the required thickness and reinforcement based on structural load requirements. For preliminary design purposes, a modulus of subgrade reaction of 100 pounds per cubic inch (pci) can be used for design for slabs and grade beams.

5.6 <u>Earth Retaining Structures</u>

The proposed development is expected to require various types of earth retaining structures: free-standing cantilever retaining walls; temporary shoring and below-grade walls for several of the proposed structures. In general, free-standing retaining structures planned at the site should be backfilled with granular, very low expansive soil and be constructed with a backdrain in accordance with the recommendations provided on Figure 2. The backdrain should be sloped at a minimum of one percent toward an approved non-erosive outlet. The following parameters may be used for the preliminary design of conventional retaining structures with soil backfill. These values may not be used to design for retaining wall in which bedrock is present behind the wall due to special considerations with regard to geologic surcharge.

Condition with Level Backfill	Equivalent Fluid Unit Weight (psf/ft) For Compacted Granular Soil Backfill only, not	
	applicable for retaining wall with bedrock behind wall	
Active - Static	38	
At-Rest	58	
Seismic	18 (inverted triangular distribution)	
Passive	350 to a maximum of 3,500 psf	
Coefficient of Friction	0.35	

Unrestrained walls that are free to rotate or deflect may be designed using the active earth pressure. For restrained walls that are fixed against rotation, such as basement wall, the at-rest condition should be used. The lateral passive resistance should be taken into account only if it is ensured that the soil providing passive resistance, embedded against the foundation elements, will remain intact with time. We also recommend using the at-rest pressure for design of walls supporting settlement-sensitive structures, such as adjacent roadways and structures. The above-recommended lateral pressures were based on a soil total unit weight of 120 pounds per cubic foot (pcf). No factor of safety or load factor was applied to the lateral pressure values.

The design parameters stated in the table above are for drained conditions, i.e., no groundwater or other water accumulation behind the wall. In consideration of the encountered depth to groundwater in the area of the site where the finished floor elevations will be approximately El. +130 feet msl, precautions will be required to ensure the proper function of the permanent subsurface drainage system or the design of the below grade walls (and floor slab) should include provisions to resist hydrostatic pressures. In this event, the earth pressures for use in design are recommended to be 82 psf/ft for active earth pressure, 92 psf/ft for at-rest earth pressure and 250 psf/ft to a maximum of 2,500 psf for passive pressure for the portions of the walls that are submerged. On a preliminary basis pending further analysis groundwater data, a high water table at El. +136 feet msl is recommended for design.

If the retaining structures are braced at the top or at specific design intervals and are constructed in a braced excavation, the earth pressure may then be approximated by a rectangular soil pressure distribution with the pressure per foot of width equal to 24H psf, where H is equal to the depth of the retaining structure being supported. Otherwise the retaining structure should be designed using the recommended at-rest pressure.

Backfill for retaining walls should be compacted to a minimum of 90 percent relative compaction based on ASTM Test Method D1557. Relatively light construction equipment should be used to backfill the retaining walls.

Lateral pressures from other surcharge and superimposed loads (for example, from vehicle traffic and adjacent structures) should be added to the above recommended lateral earth pressures if the loads fall within a projected area of an imaginary line extended at an angle of 45 degrees from the wall foundation. Thirty two percent of the surcharge load may be used for unrestrained walls and forty-eight percent of the surcharge may be used for restrained walls.

Foundations for retaining walls may be designed for a maximum net allowable soils bearing pressure of 3,600 psf with a minimum embedment of 18 inches below the lowest adjacent grade.

Lateral pressure on the retaining wall along MacArthur Boulevard will be dependent on the geologic structure of the bedrock. The design lateral pressure will be provided in the final design phase.

5.7 <u>Subterranean Floor Slab Drainage</u>

The subterranean floor slabs planned for the proposed development will be in close proximity to at least the groundwater table encountered at the time of our exploration and during our short term period of observation, and may be periodically submerged. The design of these subterranean slabs should, therefore, be designed to resist hydrostatic uplift or a permanent subfloor drainage system should be included in the design of the slab. A suitable drainage system typically consist of a series of perforated drain pipes located along the interior and exterior sides of the footings as well as piping at regular intervals in both directions below the slab. The interior pipes typically discharge to a central sump which is then drained by either pumping or gravity flow to a suitable drainage outlet.

5.8 <u>Corrosion Protection Measures</u>

Corrosion tests have been performed on composite soil samples obtained from depths of 35 to 45 feet below current site grade. Results of the testing show the onsite soil is severely corrosive to ferrous metals. Sulfate and chloride exposure for concrete is deemed negligible. Protection of steel against corrosion is recommended for metals in contact with the site subsurface soils. Corrosion mitigation may include the need for sacrificial metal, the use of protective coatings and/or cathodic protection. A qualified corrosion engineer should be consulted to provide specific recommendations for corrosion protection.

Because of the limited testing performed and potential variability in chemical contents and resistivity in soils, we recommend that additional chemical and corrosion tests be performed during site grading operations and prior to the placement of concrete and buried metals to confirm the findings and recommendations provided in this report. The underground utilities contractor should be provided the findings in this report and implement the required measures and/or special treatments to mitigate corrosion.

5.9 <u>Surface Drainage</u>

Ponding of water adjacent to structures should be avoided. During and after construction, positive drainage should be provided to direct surface water away from structures towards suitable, non-erosive drainage devices.

5.10 Pavement Design

Based on the design procedures outlined in the current Caltrans Highway Design Manual, and using an R-value of at least 40 for the subgrade and 78 for crushed aggregate base course, the following flexible pavement sections may be used for various Traffic Indices. Additional R-value tests should be performed during grading to confirm if the actual field condition is consistent with the findings herein.

Traffic Index	Asphalt Concrete (inches)	Aggregate Base (inches)
5.0 or less	3.0	4.0
6.0	3.0	6.5
7.0	4.0	7.0
8.0	4.0	9.5
9.0	5.0	10.5
10.0	5.0	13.0

All pavement construction should be performed in accordance with the *Standard Specifications for Public Works Construction*. Field observation and periodic testing, as needed during placement of the base course materials, should be undertaken to ensure that the requirements of the standard specifications are fulfilled. Prior to placement of aggregate base, the subgrade soil should be processed to a minimum depth of 6 inches, moisture-conditioned to near optimum moisture content, and recompacted to a minimum of 90 percent relative compaction. Aggregate base should be placed in thin lifts, moisture conditioned, as necessary, and compacted to a minimum of 95 percent relative compaction.

5.11 Additional Geotechnical Services

The geotechnical recommendations presented in this report are based on subsurface conditions as interpreted from limited subsurface explorations and limited laboratory testing. A design level geotechnical investigation should be performed once the building layouts, grading plans and structural loadings are finalized. Our recommendations may be revised, as necessary, based on future plans.

The final grading and foundation plans should implement the recommendations presented in this report and should be reviewed by the project geotechnical consultant. Our recommendations may be revised, as necessary, based on future plans.

5.12 Limitations

The conclusions and recommendations presented in this report have been based upon the generally accepted principles and practices of geotechnical engineering utilized by other competent engineers at this time and place. No other warranty is either express or implied.

The conclusions and recommendations presented in this report have been based upon the subsurface conditions encountered at discrete and widely spaced locations and at specific intervals below the ground surface. Due to the inherent variance in soil conditions, variability may be encountered during construction. Where encountered during construction, such variances should be brought to our attention to determine the impact upon the recommendations presented in this report.

This report has been prepared for the use of our client for the project described in this report. The report may not be used by others without the written consent of our client and our firm.

6.0 **REFERENCES**

- Barrows, A.G., 1974, A Review of the Geology and Earthquake History of the Newport-Inglewood Structural Zone, Southern California: California Division of Mines and Geology, Special Report 114.
- Boore, D. M., and Atkinson, G. M., 2008, "Ground-Motion Prediction Equations for the Average Horizontal Component of PGA, PGV, and 5%-Dampted PSA at Spectral Periods between 0.01 s and 10 s", Earthquake Spectra, Volume 24, No. 1, pages 99-138, February 2008; © 2008, Earthquake Engineering Research Institute (EERI).
- Bozorgnia, Y., Campbell, K.W., and Niazi, M., 1999, Vertical Ground Motion: Characteristics, Relationship with Horizontal Component, and Building Code Implications, *Proceedings* of the SMIP99 Seminar on Utilization of Strong-Motion Data, September 15, Oakland, pp 23-49.

California Building Code (CBC), 2007.

- California Division of Mines and Geology (CDMG), 1997 (Revised 2001), Seismic Hazard Evaluation of the Laguna Beach 7.5-Minute Quadrangle, Orange County, California, Open File Report 97-21.
- _____, 1998, State of California Seismic Hazard Zones Map, Laguna Beach Quadrangle, Official Map, released April 15, 1998.
- _____, 2000, CD-ROM containing digital images of Official Maps of Alquist-Priolo Earthquake Fault Zones that affect the Southern Region, DMG CD 2000-003 2000.
- Campbell, K. W., and Bozorgnia, Y., 2008, "NGA Ground Motion Model for the Geometric Mean Horizontal Component of PGA, PGV, PGD and 5% Damped Linear Elastic Response Spectra for Periods Ranging from 0.01 to 10 s", Earthquake Spectra, Volume 24, No. 1, pages 139-171, February 2008; © 2008, Earthquake Engineering Research Institute (EERI).
- Chiou, Brian S.-J., and Youngs, Robert R., 2008, "A NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra", Earthquake Spectra, Volume 24, No. 1, pages 173-215, February 2008; © 2008, Earthquake Engineering Research Institute (EERI).

- County of Orange, 2005, Resources and Development Management Department, On-site Sewage Absorption System Guidelines Purpose, Section VIII Seepage Pits Percolation Test Procedures, dated May 23, 2005.
- Division of State Architect, Department of General Services, State of California, 2009, Use of the Next Generation Attenuation (NGA) Relations, DSA Bulletin 09-01, Issued January 26, 2009, Effective March 1, 2009, 1 p.
- Grant, L. B., Mueller, K. J., Gath, E. M., Cheng, H., Edwards, R. L., Munro, R., Kennedy, G. L., 1999, Late Quaternary Uplift and Earthquake Potential of the San Joaquin Hills, Southern Los Angeles Basin, California: Geological Society of America Geology, Volume 27, No. 11, pp. 1031-1034.
- Grant, L.B., Ballenger, L.J., and Runnerstrom, E.E., 2002, Coastal Uplift of the San Joaquin Hills, Southern Los Angeles Basin, California, by a Large Earthquake since A.D. 1635: Bulletin of Seismological Society of America, Volume 92, No. 2, pp. 590-599.
- Grant, L.B., Gath, E., Munro, R., and Roquemore, G., 1997, Neotectonics and Earthquake Potential of the San Joaquin Hills, Orange County, California: Seismological Research Letters, Volume 68, No. 2, pp. 315.
- Huang, Yin-Nan, Whittaker, Andrew S., and Luco, Nicolas, 2008, "Maximum Spectral Demands in the Near-Fault Region", Earthquake Spectra, Volume 24, No. 1, pages 319-341, February 2008; © 2008, Earthquake Engineering Research Institute (EERI).
- Leighton Consulting, Inc., 2008, Due-Diligence Geotechnical Exploration for the Proposed City Hall and Parking Structure, Newport Beach, California, Leighton Project Number 602184-001, dated May 13, 2008.
- LeRoy Crandall and Associates, 1990, Report of Preliminary Geotechnical Investigation, Proposed Central Library, Pacific Coast Highway between MacArthur Boulevard and Avocado Avenue, Newport Beach, California, LCA O90052.AEO, dated July 19, 1990.
- _____, 1991, Report of Foundation Investigation, Proposed Central Library, Pacific Coast Highway between MacArthur Boulevard and Avocado Avenue, Newport Beach, California, LCA O90052.AB), dated March 28, 1991.

- Mueller, K.J., Grant, L.B., and Gath, E.M., 1998, Late Quaternary Growth of the San Joaquin Hills Anticline - A New Source of Blind Thrust Earthquakes in the Los Angeles Basin: Seismological Research Letters, Volume 69, No. 2, pp. 161-162.
- Office of Statewide Health Planning and Development, State of California, 2008, Next Generation Attenuation Relations for Use With the 2007 California Building Code, Code Application Notice, File No. 2-1802A.6.2, Effective September 30, 2008, 3 p.
- Petersen, Mark D., Frankel, Arthur D., Harmsen, Stephen C., Mueller, Charles S., Haller, Kathleen M., Wheeler, Russell L., Wesson, Robert L., Zeng, Yuehua, Boyd, Oliver S., Perkins, David M., Luco, Nicolas, Field, Edward H., Wills, Chris J., and Rukstales, Kenneth S., 2008, Documentation for the 2008 Update of the United States National Seismic Hazard Maps: U.S. Geological Survey Open File Report 2008-1128, 61 p.
- Public Works Standard, Inc., 2002, Greenbook, Standard Specifications for Public Works Construction: BNI Building News, Anaheim, California, 471 p.
- Risk Engineering, Inc., 2009, EZ-FRISK 7.32 Build 001, A Computer Program (Software) To Perform Site-Specific Earthquake Hazard Analysis.
- Yerkes, R.F., McCulloh, T.H., Schoellhamer, J.E. and Vedder, J.G., 1965, Geology of the Los Angeles Basin, California -- An Introduction: U. S. Geological Survey Professional Paper 420-A, 57 p.

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report Is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final,* because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenvironmental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Sitver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be commiting negligent or intentional (fraudulent) misrepresentation.

^{\\}GIS\Administration\ArcGISTemplates\NEW_GDT_SiteLocationMap.mxd

GENERAL NOTES:

* Waterproofing should be provided where moisture nuisance problem through the wall is undesirable.

* Water proofing of the walls is not under purview of the geotechnical engineer

* All drains should have a gradient of 1 percent minimum

*Outlet portion of the subdrain should have a 4-inch diameter solid pipe discharged into a suitable disposal area designed by the project engineer. The subdrain pipe should be accessible for maintenance (rodding)

*Other subdrain backfill options are subject to the review by the geotechnical engineer and modification of design parameters.

Notes:

1) Sand should have a sand equivalent of 30 or greater and may be densified by water jetting.

2) 1 Cu. ft. per ft. of 1/4- to 1 1/2-inch size gravel wrapped in filter fabric

3) Pipe type should be ASTM D1527 Acrylonitrile Butadiene Styrene (ABS) SDR35 or ASTM D1785 Polyvinyl Chloride plastic (PVC), Schedule 40, Armco A2000 PVC, or approved equivalent. Pipe should be installed with perforations down. Perforations should be 3/8 inch in diameter placed at the ends of a 120-degree arc in two rows at 3-inch on center (staggered)

4) Filter fabric should be Mirafi 140NC or approved equivalent.

5) Weephole should be 3-inch minimum diameter and provided at 10-foot maximum intervals. If exposure is permitted, weepholes should be located 12 inches above finished grade. If exposure is not permitted such as for a wall adjacent to a sidewalk/curb, a pipe under the sidewalk to be discharged through the curb face or equivalent should be provided. For a basement-type wall, a proper subdrain outlet system should be provided.

6) Retaining wall plans should be reviewed and approved by the geotechnical engineer.

7) Walls over six feet in height are subject to a special review by the geotechnical engineer and modifications to the above requirements.

RETAINING WALL BACKFILL AND SUBDRAIN DETAIL FOR WALLS 6 FEET OR LESS IN HEIGHT

WHEN NATIVE MATERIAL HAS EXPANSION INDEX OF <50

APPENDIX A
				G	iΕO	TEC	HN	CA	L BORING LOG BA-1	
Da	te		3-5-09						Sheet <u>1</u> of <u>3</u>	
Pro	Ject Iling C	<u>602</u>	184-002	Propo	sed Ci	ty Hall	- City	of Nev	Wport Beach Logged / Sampled By JAR	
Ho	le Diai	neter	2	R"		rivo M	-ROY L Ioiabt	miing		30"
Ele	vatior	n Top of	f Hole	191'	- ī	ocatio	n		See Boring Location Map	
				<u>.</u>		2	 		SOIL DESCRIPTION	sts
Elevation Feet	Depth Feet	z Graphic د Log	Attitudes	Sample No	Blows Per 6 Inche	Dry Densit pcf	Moisture Content, %	Soil Class (U.S.C.S.)	The Soil Description applies only to a location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type of Tes
190-				B1					 Terrace Deposits (Ot) (a) 0': Silty SAND (SM), brown, moist, fine to coarse grained sand, vegetation consisting of small bushes and grasses, rodent burrows, trace rock fragments. (a) 1.5': Sandy CLAY (CL), reddish brown, moist, fine to medium grained sand, trace rock fragments. (a) 3'-4.5': Dark brown sandy CLAY. 	RV
185-	5			R1	4	121	10		 @ 5': Clayey SAND to sandy CLAY (SC-CL), mottled yellow brown to orange brown, moist, fine to medium grained sand, trace rock fragments. @ 7.5': Silty clayey SAND (SM-SC), olive brown to orange brown 	
180-	10			R2	4				 (a) 7.5. Shifty Clayby Shifty (Shifty C), once brown to brange brown, moist, fine grained sand. (b) 9': SANDSTONE, highly weathered, olive brown to orange brown, heavily fractured, fractures are well healed with manganese. (c) 10': Silty clayey SANDSTONE, olive brown, moist, sand is fine grained, clay and manganese development on fracture faces, shell debris in sandy matrix. (c) 11': SANDSTONE, light gray, slightly moist, poorly cemented, friable, fine grained, unoxidized, degrades to (SP), becomes weathered and oxidized with depth. 	
175-	15 		,	R3	4	102	7		 (@ 15': SANDSTONE, light brown to orange brown, slightly moist, fine grained, weathered, oxidized, poorly cemented, friable, some silt. (@ 18': moderately upgethered, light brown to orange brown, upgetrately, 	
170-	20		@20.3' B:N14E, 21NW @21' B:N82E, 26N	R4 B2	6/9"				 (a) 18': moderately weathered, light brown to orange brown, moderately fractured. (a) 20': Silty SANDSTONE, light brown to orange brown, dry, fine grained, weathered, oxidized, poorly cemented, moderately hard to friable. (a) 20.3': Thin SILT bed, 1/8" thick within massive SANDSTONE, fine grained sand, well oxidized, moderately fractured, manganese development on fracture faces. (a) 22': Large rip-up clast of SANDSTONE and SILTSTONE. 	
165-	25		@27.1' CB:N34E, 19NW	R5 G1 😨	6/7"	110	4		 @ 24'-27': SANDSTONE, massive, iron concretions, charcoal fragments in matrix. @ 25': SANDSTONE, hard, light gray, fine grained, oxidized along fractures, poorly cemented, friable, thin beds of silty clay, orange brown to reddish brown bedding surfaces, undulating, uneven. @ 27.1': Thinnly bedded silty CLAY composed of volcanic ash, light gray to orange brown. @ 28': Severly fractured, iron nodules, hard, mottled, uneven. 	AL, SA
CANE		•• :e.			-				· · · · · · · · · · · · · · · · · · ·	
S SP R RI B BL T TU	LETTE NG SAM JLK SAM BE SAM	ON PLE IPLE IPLE	G GRAB SA C CORE SA	MPLE MPLE	DS MD CN CR	DIRE DIRE MAXIN CONS CORR	ESTS: CT SHEA MUM DEM OLIDATION OSION	NR NSITY ON	SA SIEVE ANALYSIS SE SAND EQUIVALENT EI EXPANSION INDEX RV R VALUE	

				G	JEO	rec	HN	CA	L BORING LOG BA-1	
Da	te		3-5-09						Sheet 2 of 3	
Pro Dri	illina C	<u>602</u>	184-002	Prop	osed Ci	ty Hall ∆I	- City -Rov Γ	of Nev Vrilling	wport Beach Logged / Sampled By JAR	
Но	le Dia	meter	2	:8"	D	rive W	/eight	<u>ynning</u>	rypoorkig Drop	30"
Ele	vatior	n Top of	f Hole	191'	L	ocatio	n		See Boring Location Map	
Elevation Feet	Depth Feet	ح Graphic س	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION The Soil Description applies only to a location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type of Tests
160-		11/1/1	@31.1' CB:N19E, 24NW @33.6'	R6	8	96	16		 BEDROCK (Tm): continued. (a) 30': Silty clayey SANDSTONE, mottled light olive gray to orange brown, moist, fine grained, moderately hard, well oxidized, weathered, thinnly bedded. (a) 30.5': Concretionary bed. (a) 31': becomes thinnly bedded silty CLAYSTONE, weathered, oxidized, hard, well cemented along thin beds of volcanic ash, gently dipping. 	
155-	35		B:N5E, 20W @33.7' B:N15W, 30SW @35' B:N24E, 24NW @37.9'	R7	10	100	5		 (a) 31.1': Thin light gray bed of SAND overlain by reddish brown CLAY bed, well cemented, hard, moist, well developed bedding surface with manganese development. (a) 33.7': SAND bed, light gray, 2"-4" thick between CLAY, undulated. (a) 35': Silty sandy CLAY, orange brown to light brown mottled. (a) 35': Silty sandy CLAY, orange brown to light brown mottled. (a) 35': Silty sandy CLAY, orange brown to light brown mottled. (a) 35': Silty sandy CLAY, orange brown to light brown mottled. (a) 35': Silty sandy CLAY, orange brown to light brown mottled. (a) 35': Silty sandy CLAY, orange brown to light brown mottled. (b) 35': Silty sandy CLAY, orange brown to light brown mottled. (c) 35': Silty sandy CLAY, fine grained, moderately cemented within unoxidized sand beds, oxidized sand is poorly cemented and friable, moderately fractured and lined with FeO2. (c) 37.5': oxidia SANDSTONE. 	
150-	40	0	J:N74E, 55N	R8	10/10"	108	4		 (a) 37.9: Statized SANDSTONE, fine grained, dry, poorly centented, friable. (a) 37.9: Fracture out of hole (a) 38': Sandstone, fine grained, unoxidized. (a) 40': SANDSTONE, hard, light orange brown, dry, fine grained, oxidized, poorly cemented, friable with thin zones of well cemented sand, becomes cross-bedded (a) 41'. (a) 42': Rip-up clasts composed of clayey SILTSTONE. (a) 43': Massive SANDSTONE, oxidized, mildly cross-bedded, poorly 	DS
145-	45			R9	10/10"	106	5		 fractured, hard. @ 45': SANDSTONE, hard, light orange brown, dry, fine grained, oxidized, poorly cemented, some silt. 	
140-	50		@5 2 ' B:N 7 5E, 27N	R10	14				 @ 50': SANDSTONE, hard, orange brown, medium grained, oxidized, poorly cemented, becoming moist. @ 52': Thin light gray SAND bed, well cemented, 1/8" thick, offset by fracture by approximately 1/2"-1". 	
135-	55		@5 9 .5'	R11	14	100	8		@ 55': SANDSTONE, reddish brown, moist, fine grained, poorly cemented, oxidized, friable with fine gravel sized rock fragments.	
	60	· · ·	F:N31E, 70SE						@ 59': Fault, 1/8"-1/4" thick, infilled with clay.	
SAMP S SF R RI B BU T TU	LE TYPE PLIT SPO NG SAM JLK SAM JBE SAM	ES: DON PLE MPLE IPLE	G GRAB S C CORE S	AMPLE AMPLE	TYF DS MD CN CR	PE OF TI DIRE MAXII CONS CORR	ESTS: CT SHEA MUM DEI OLIDATI COSION	AR NSITY ON	SA SIEVE ANALYSIS SE SAND EQUIVALENT EI EXPANSION INDEX RV R VALUE	

Da	to		3-5-09	G	iEO	IEC	HN	CA	L BORING LOG BA-1	
Pro	oject	6021	<u>3-3-09</u> 184-002	Prope	 osed Ci	tv Hall	- City	of Nev	wport Beach Logged / Sampled By JAR	۱ <u>ــــــــــــــــــــــــــــــــــــ</u>
Dri	lling C	Co				Âl-	-Roy D	rilling	Type of Rig EZ-Bore	9
Ho	le Dia	meter		28"	D	rive W	leight		Dro	p _30"
Ele	vatior		HOIE	191		ocatio	'n		See Boring Location Map	
Elevation Feet	Depth Feet	z Graphic <i>v</i>	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION The Soil Description applies only to a location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type of Tests
130- 	60			R12	12/10"	107	12		 BEDROCK (Tm): continued. @ 60': SANDSTONE, light brown to reddish brown, very moist, fine to medium grained, poorly cemented, friable. @ 62': Standing water in boring at time of logging. 	Unconfined Compressive Strength
125-	65 								Total depth of boring: 64'. Groundwater encountered at 62' bgs. Boring was backfilled with soil cuttings.	
120-	70									
115-	75									
110-	80									
105-	85									
SAMP S SF R RI B BI T TL	PLE TYPI PLIT SPO ING SAN ULK SAN JBE SAN	ES: DON IPLE MPLE MPLE	G GRAB C CORE	SAMPLE SAMPLE	TY DS MD CN CR	DIRE DIRE MAXII CONS CORF	ESTS: CT SHE MUM DE COLIDAT	AR NSITY ION	SA SIEVE ANALYSIS -200 % FINES PASSING SE SAND EQUIVALENT AL ATTERBERG LIMITS EI EXPANSION INDEX RV R VALUE	

De	1		2 5 00	G	JEO	TEC	HN	CA	L BORING LOG HA-1	
Pro	ie oject	6021	3-5-09	Prop	 osed Ci	tv Hall	- Citv	of Nev	woort Beach Logged / Sampled By _ JAR	
Dri	lling C	o					• • • • • •		Type of Rig Hand Auger	
Ho Ele	le Diar	neter Top of	Hole	2.5" 183'	_ D L	rive W ocatio	/eight		Drop Drop	
										•
Elevation Feet	Depth	Graphic Log w	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION The Soil Description applies only to a location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	I ype of Lests
180-	0			B1	-			SM	Terrace Deposits (Qt) @ 0': Silty SAND, brown, moist, fine grained, small bushes and grasses, rodent burrows. @ 2.5': Silty SAND with trace of clay, brown to orange brown, moist, fine grained. @ 3': Becomes BEDROCK: Monterey Formation (Tm) @ 4': Sandy CLAYSTONE, dark brown, moist, fine grained, shell fragments.	
175-	 10				-				Total depth of hand-auger borng: 5'. Boring backfilled with soil cuttings.	
170-					-					
165-	 20			-	-					
160-										
155-				-	-					
SAMP S SF R RI B BI T TL	LE TYPE PLIT SPO NG SAM ULK SAN JBE SAN	ES: DON IPLE IPLE IPLE	G GRAB C CORE	SAMPLE SAMPLE	TY DS MD CN CR	PE OF T DIRE MAXI CONS CORR	ests: CT She/ MUM Dei Solidati Rosion	AR NSITY ION	SA SIEVE ANALYSIS SE SAND EQUIVALENT EI EXPANSION INDEX RV R VALUE	1

				G	EO	TEC	HN	CA	L BORING LOG HA-2	
Da	te		3-6-09						Sheet <u>1</u> of <u>1</u>	
Pro	oject	602	18 <u>4-002</u>	Propo	sed Ci	ity Hall	- City	of Ne	ewport Beach Logged / Sampled By CDL	
Dri	lling (:0 motor		5"		rivo M	loight		[ype of Rig And Auger	r "
Ele	evatior	n Top of	Hole	. <u>.</u> 210'	– Ľ	ocatio	n		See Boring Location Map	
						Ŋ	 		SOIL DESCRIPTION	sts
Elevation	Depth Feet	a Graphic Log	Attitudes	Sample No	Blows Per 6 Inche	Dry Densit pcf	Moisture Content, '	Soil Class (U.S.C.S.)	The Soil Description applies only to a location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type of Te
210-	0			A-1 🕏				SM	Terrace Deposits (Ot) (a) 0': Silty SAND, brown, moist, fine to medium grained sand. (a) 0.5': Silty SAND, brown, moist, fine to medium grained sand.	
205-				A-2 ©					 (a) 0.5: Shity SAND, brown, moist, the to menuin grained said. (a) 1: CLAY, light gray to light brown, moist, some fine grained sand, some siltstone and claystone fragments. BEDROCK: Monterey Formation (Tm) (a) 1: CLAYSTONE, light gray to light brown, moist, some fine grained sand, some siltstone fragments. (a) 3: Clayey SANDSTONE, light gray, dry, fine grained sand, some claystone fragments. Total depth of hand-auger boring: 3.5'. Boring backfilled with soil cuttings. 	
200-	10									
195-	15									
190-	20									
180 ⁻ SAMP		ES:			TY	PE OF T	ESTS:			
S SI R R B B T T	PLIT SPO ING SAN ULK SAN JBE SAN	DON IPLE MPLE MPLE	G GRABS C CORES	AMPLE AMPLE	DS ME CN CR	DIRE MAXII CONS CORF	CT SHEA MUM DEI SOLIDATI	AR NSITY ON	SA SIEVE ANALYSIS -200 % FINES PASSING SE SAND EQUIVALENT AL ATTERBERG LIMITS EI EXPANSION INDEX RV R VALUE	

GEOTECHNICAL BORING LOG HA-3

Da Pr/	te		3-6-09				0.1		Sheet <u>1</u> of <u>1</u>	
Dri	lling C	0021 Co.	84-002	Propo	sed Cl	<u>ty Hal</u>	- City	<u>or ive</u>	Type of Rig Hand Auge	r
Но	le Diar	neter	2	.5"	D	rive W	/eight		Drop	
Ele	vation	Top of	Hole		L	ocatio	n		See Boring Location Map	
Elevation Feet	Depth Feet	Graphic Log v	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION The Soil Description applies only to a location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type of Tests
210-	0			A-1 0 A-2 0 A-3 0				CL	Terrace Deposits (Qt) @ 0': CLAY with sand, brown mottled with orange and gray, moist, fine grained sand. @ 0.5': same as above. @ 1.5': same as above. @ 3': same as above.	
205-	5								Total depth of hand-auger boring: 3.5'. Boring backfilled with soil cuttings.	
200-	10									
195-	15									
190-	20									
185-	25									
180 ⁻¹		.c.		L_	TV/		Lete.			۵,
S SF R RI B BI T TL	PLIT SPC NG SAM JLK SAM JBE SAM	ON (PLE (IPLE	GRAB S	AMPLE AMPLE	DS MD CN CR	DIRE	CT SHEA NUM DEN OLIDATI	NR NSITY ON	SA SIEVE ANALYSIS SE SAND EQUIVALENT EI EXPANSION INDEX RV R VALUE	

GEOTECHNICAL BORING LOG HA-4

Da Pr/	te	6004	3-6-09	D	_		0.4	C N 1		Sheet <u>1</u> of	1 ed By CDI	
Dri	illina C	6021	84-002	Propo	sed C	ty Hal	- City	of Nev	wport Beach	Type of Rig	Hand Aug	er
Но	le Diar	neter	2	.5"	D	rive W	/eight			.,peeg _	Drop) "
Ele	vation	n Top of	Hole	242'	L	ocatio	n		See Borin	ng Location Map		
Elevation Feet	Depth Feet	Graphic Log	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DES The Soil Description applies only the time of drilling. Subsurface c locations and may change with the simplification of the actual condit between soil types may be graduated	to a location of the onditions may differ me. The description ions encountered.	exploration at at other is a Fransitions	Type of Tests
240-	0			A-1 0 A-2 0 A-3 0				CL	Terrace Deposits (Ot) @ 0': CLAY, brown to light brown sand, moist, plastic, oxidized. @ 0.5': CLAY, brown mottled with oxidized. @ 1.5': same as above. BEDROCK: Monterey Formation @ 2': SILTSTONE, light gray to bro fine grained sand.	mottled with orange fi orange fine grained sa <u>n (Tm)</u> own, hard, damp to me	ine grained and, moist,	
235-	5								@ 3 ¹ : SILTSTONE, light gray to bro fine grained sand. Total depth of hand-auger boring: 3 Boring backfilled with soil cuttings.	own, hard, damp to m	oist, some	
230-	10											
225-												
22 0-	20											
215-												
SAMP S SI R R B B T T	PLE TYPE PLIT SPC ING SAM ULK SAM JBE SAM	ES: DON (IPLE (IPLE IPLE	G GRAB S C CORE S	SAMPLE SAMPLE	TY DS MD CN CR	PE OF T DIRE MAXI CONS CORF	ESTS: CT SHEA MUM DEI SOLIDATI ROSION	NR NSITY ON	SA SIEVE ANALYSIS -200 % FI SE SAND EQUIVALENT AL ATT EI EXPANSION INDEX RV R VALUE	INES PASSING ERBERG LIMITS	X	

				G	EO.	TEC	HN	CA	L BORING LOG HA-5	
Da	te		3-6-09						Sheet <u>1</u> of <u>1</u>	
Dri	oject illina C	6021	84-002	Propo	sed Ci	ty Hal	- City	of Nev	wport Beach Logged / Sampled By <u>CDL</u>	r
Но	le Diar	neter	2	.5"	D	rive W	eight		Drop	, 11
Ele	vatior	Top of	Hole	252'	L	ocatio	n		See Boring Location Map	
Elevation Feet	Depth Feet	Graphic Log ø	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION The Soil Description applies only to a location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type of Tests
250-	5			A-1 0 A-2 0 A-3 0				CL	Terrace Deposits (Qt) @ 0': CLAY with sand, brown to orange brown, moist, fine grained sand. @ 0.5': same as above. BEDROCK: Monterey Formation (Tm) @ 1.5': SILTSTONE, light gray to light brown, damp, severely weathered and fractured, oxidized with manganese development along fracture surfaces. @ 3': same as above. Total depth of hand-auger boring: 3.5'.	
245-									Boring backfined with son cuttings.	
240-	-									
235-	15 									
230-	20									
225-	25									
Samp S SP R RI B BL T TU	LE TYPE PLIT SPO NG SAM JLK SAM JBE SAM	IS: ION C IPLE C IPLE PLE	GRAB SA	AMPLE AMPLE	TY DS MD CN CR	PE OF TE DIRE MAXIM CONS CORR	ESTS: CT SHEA MUM DEM OLIDATIO OSION	NR NSITY ON	SA SIEVE ANALYSIS -200 % FINES PASSING SE SAND EQUIVALENT AL ATTERBERG LIMITS EI EXPANSION INDEX RV R VALUE	

Da	GEOIECHNICAL BORING LOG NB-1 Date 3-4-09 Sheet 1 of 3 Project 602184-002 Proposed City Hall - City of Newport Beach Logged / Sampled By JMP Drilling Co. Martini Drilling Type of Rig CME-75													
Pro	oject	602	184-002	Pronc	 Sed Ci	ty Hall	- City	of Nev	Logged / Sampled By JMP					
Dri	lling C	Co				Ma	artini D)rilling	Type of Rig CME-75					
Но	le Dia	meter		6"	D	rive W	/eight		140 lbs Auto-hammer Drop	30"				
Ele	vatior	ו Top of	f Hole	168'	L	ocatio	n		See Boring Location Map					
Elevation Feet	Depth Feet	z Graphic v	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION The Soil Description applies only to a location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type of Tests				
	0 			_					BEDROCK: Monterey Formation (Tm) @ 0: Clayey SANDSTONE, brown, moist, loose, fine grained sand.					
165-	-			sı	5 13 22				@ 3': Clayey Gravelly SANDSTONE, brown, moist, dense.					
	5			R1	7 27 50/5.5"	112	8		@ 5': SANDSTONE with Gravel, light brown with orange brown oxidation, slightly moist, dense, fine grained sand, thin silty sand bed.					
160-	-			S2	12 16 14				@ 7.5': SANDSTONE, light brown, slightly moist, very dense, some orange oxidation.					
	10 			R2	6 50/6"	104	8		@ 10': SANDSTONE, light brown, slightly moist, very dense, some orange oxidation, thin silty sand bed.					
155-				S3	7 50/6"				@ 15': SANDSTONE, light yellow brown, slightly moist, moderately hard, fine grained sand.					
150	 20			BI R3	7 50/5.5"	102	5		@ 20': SANDSTONE, light brown to orange brown, slightly moist, moderately hard, fine to medium grained sand, thin silty sandstone bed.					
145-	-			S4 B2	15 39 50/3"				@ 22.5': SANDSTONE, light brown to orange brown, moderately hard, some claystone clasts.					
140-				R4 B3	3 39 50/2.5"	102	6		@ 25': SANDSTONE, light gray to white, moderately hard, slightly moist, fine grained, thin silty sandstone bed.					
SAMO	30			11].			ECTP:							
S SF R RI B BU T TU	PLIT SPO NG SAN ULK SAN JBE SAN	JON IPLE IPLE IPLE	G GRAB C CORE	SAMPLE SAMPLE	DS MD CN CR	DIRE MAXII CONS CORR	CT SHEA MUM DEI COLIDATI	AR NSITY ON	SA SIEVE ANALYSIS -200 % FINES PASSING SE SAND EQUIVALENT AL ATTERBERG LIMITS EI EXPANSION INDEX RV R VALUE					

. .

				C	JEO	TEC	HN	CA	L BORING LOG NB-1	
Dat	e		3-4-09						Sheet 2 of 3	
Pro Dri	Ject Iling (<u>6021</u>	84-002	Prop	osed Ci	ty Hall Ma	- City artini D	of Nev Vrilling	wport Beach Logged / Sampled By	
Ho	le Diai	meter		6"	D	rive W	leiaht	ming	140 lbs Auto-hammer Drop	30"
Ele	vatior	n Top of	Hole	168	<u> </u>	ocatio	n		See Boring Location Map	
Elevation Feet	Depth Feet	z Graphic س Log	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION The Soil Description applies only to a location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type of Tests
135-				R5		97	6		 BEDROCK (Tm): continued. @ 30': SANDSTONE, light brown, slightly moist, fine grained, thin silty sandstone bed. 	
	35—			S5	\$ 50/5"				@ 35': SANDSTONE, light brown to light orange brown, slightly moist, hard.	CR, EI
130-	-			S6	∑ 50/4.5"				@ 37.5': SANDSTONE, same as above.	CR, EI
	40			R6	50/3.5"	97	7		@ 40': SANDSTONE, light orange brown, moist, hard, fine grained, thin silty sandstone bed.	
125-	 45 			S7	 ∑ 50/6"				@ 45': SANDSTONE, medium brown, moist to very moist, hard, fine to medium grained sand.	
120- ¥				R7	50/3 "	108	17		@ 50': SANDSTONE, medium brown, wet, hard, fine to medium grained, thin silty sandstone bed.	
115-									@ 50.3': groundwater encountered (8:50am)	
110-				S8	× 50/5" - -				@ 55': SANDSTONE, medium brown, wet, hard, fine to medium grained sand.	
SAMP S SF R RI B BU T TU	LE TYPE PLIT SPO NG SAN JLK SAN JBE SAN	ES: DON IPLE MPLE MPLE	G GRAB	SAMPLE SAMPLE	TY DS MD CN CR	PE OF T DIRE MAXI CONS CORF	ESTS: CT SHE MUM DE COLIDAT ROSION	AR NSITY ION	SA SIEVE ANALYSIS -200 % FINES PASSING SE SAND EQUIVALENT AL ATTERBERG LIMITS EI EXPANSION INDEX RV R VALUE	

				G	jΕΟ	ГЕС	HN	CA	L BORING LOG NB-1	
Da	te		3-4-09						Sheet <u>3</u> of <u>3</u>	
Pro	oject	6021	184-002	Propo	osed Ci	ty Hall	- City	of New	wport Beach Logged / Sampled By _JMP	
Dri	Iling C			0"		Ma	artini C	rilling	Type of Rig CME-75	
HO	ie Diai	meter Top of		6" 169'	– Ľ	rive W	/eight		140 lbs Auto-hammer Drop	30"
Ele	valior		nole	100		ocatio	n	_		
Elevation Feet	Depth Feet	Graphic Log	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION The Soil Description applies only to a location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type of Tests
105-				R8	50/1.5"	122	13		 BEDROCK (Tm): continued. @ 60': SANDSTONE, medium brown, wet, hard, fine to medium grained sand, thin silty sandstone bed. @ 64': refusal (9:20am) 	
100-	65								Total depth of boring: 64.0'. Refusal due to difficulty drilling. Groundwater encountered at 50.3' bgs during drilling (8:50am) and tagged at 47.0' bgs (9:25am). Boring backfilled with soil cuttings.	
95-										
90-										
85-										
80-	- - 90-									
SAMPI S SP R RII B BU T TU	LE TYPE PLIT SPO NG SAM JLK SAM BE SAM	ES: DON (PLE (IPLE IPLE	GRAB S CORE S	SAMPLE SAMPLE	TYF DS MD CN CR	PE OF TE DIRE MAXIM CONS CORR	ESTS: CT SHEA MUM DE! OLIDATI OSION	AR NSITY ON	SA SIEVE ANALYSIS SE SAND EQUIVALENT EI EXPANSION INDEX RV R VALUE	

				G	EO	IEC	HN	CA	L BORING LOG NB-2	
Da	te		3-4-09						Sheet <u>1</u> of <u>3</u>	
Pro	oject	6021	84-002	Propo	sed Ci	ty Hall	- City	of Nev	wport Beach Logged / Sampled By JMP	
Dr	illing C	0. 		6"		Ma Ma	artini D Volght	Prilling	140 lbs Auto hammer Dron	30"
Ele	evation	Top of	Hole	187'	- L	ocatio	n		See Boring Location Map	
ation	pth eet	p h ic og	ndes	ole No.	ows Inches	ensity	sture ent, %	Class. .C.S.)	SOIL DESCRIPTION The Soil Description applies only to a location of the exploration at	of Tests
Elev		s Gra V S	Attit	Samp	Blc Per 61	Dry D	Conto	Soil (U.S	the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type o
185-	-								Terrace Deposits (Ot) @ 0': Sandy Clayey SILT, brown, moist.	
	-			S1	2 2 7			ML	@ 3': Sandy Clayey SILT, brown, moist.	
	5			R1	7 11 12	98	15	ML	@ 5': Sandy Clayey SILT, medium brown, moist, fine grained thin clay bed.	
180-									BEDROCK: Monterey Formation (Tm):	
				S2	4 3 5		1		@ 7.5': SANDSTONE, light to medium brown, slightly moist, soft, fine grained sand.	
175-	10			R2	7 13 20	100	8		@ 10': SANDSTONE, medium brown, slightly moist, moderately hard, fine grained, thin silty sandstone bed.	
170-				S3	8 12 20				@ 15': CLAYSTONE and SANDSTONE interbedded, light gray to orange brown, slightly moist, moderately hard.	
165	20			R3	18 50/5"	106	6		@ 20': SANDSTONE, light to medium brown, slightly moist, moderately hard, fine grained sand, thin silty sandstone bed.	
105				S4 B2	20 23 42				@ 22.5': SANDSTONE, light to medium brown, slightly moist, moderately hard, fine grained sand.	
160-	25			S5	14 35 35				@ 25': SANDSTONE, light brown, slightly moist, moderately hard, fine grained sand.	
SAMF S S R R B B T T	30 PLE TYPE PLIT SPC ING SAM ULK SAM	ES: DON PLE MPLE	G GRAB	SAMPLE	TY DS MD CN	PE OF T DIRE MAXI CONS	ESTS: CT SHE MUM DE COLIDAT	AR NSITY ION	SA SIEVE ANALYSIS -200 % FINES PASSING SE SAND EQUIVALENT AL ATTERBERG LIMITS EI EXPANSION INDEX EV AVALUE	

-			~	Ģ	έEΟ	IEC	HN	CA	L BORING LOG NB-2	
Dat	te	0004	3-4-09						Sheet 2 of 3	
Dri	llina C	6021 :o .	84-002	Propo		<u>ty Hal</u> Ma	<u>- City</u> artini D	ot Nev Drillina	Type of Rig CME-75	
Но	le Dia	neter		6"	D	rive W	/eight		140 lbs Auto-hammer Dro	o 30"
Ele	vatior	n Top of	Hole		L	ocatio	n		See Boring Location Map	
Elevation Feet	Depth Feet	ے Graphic م	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION The Soil Description applies only to a location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type of Tests
155-				R4	15 50/6"	103	3		 BEDROCK (Tm): continued. @ 30': SANDSTONE, light yellow brown, slightly moist, moderately hard, fine to medium grained sand, thin silty sandstone bed. 	
150-	35			S6	21 34 40				@ 35': SANDSTONE, same as above.	CR, EI
	40			S7 R5	33 50/3" 50/4.5"	102	4		 @ 37.5': SANDSTONE, same as above. @ 40': SANDSTONE, light gray to light orange brown, slightly moist, 	CR, DS,
145-					-				moderately hard, fine grained sand.	EI
140-	45			S8 2	50/6"				@ 45': SANDSTONE, light gray to orange brown, slightly moist, moderately hard, fine grained.	CR, El
135-	50			R6	18 50/6"	84	33		@ 50': SANDSTONE and CLAYSTONE interbedded, orange brown to olive green, slightly moist, moderately hard, fine grained.	
130-	55			S9	12 50/5"				@ 55': same as above.	
Sampi S SP R Rii B BL T TU	60 LE TYPE PLIT SPC NG SAM JLK SAM JBE SAM	S: ON G PLE C IPLE IPLE	GRABS CORES	SAMPLE	TYI DS MD CN CR	PE OF TI DIRE MAXII CONS CORR	ESTS: CT SHE/ MUM DEI COLIDATI	AR NSITY ON	SA SIEVE ANALYSIS -200 % FINES PASSING SE SAND EQUIVALENT AL ATTERBERG LIMITS EI EXPANSION INDEX RV R VALUE	

- -

Do			2 4 00	Ģ	EO	IEC	HNI	CA	L BORING LOG NB-2	
Pro	iect	6021	3-4-09	Bron	 osod Ci	ty La	City		Logged / Sampled By JMP	
Dri	lling C	:o.	104-002	<u>FIQ</u> p		Ma Ma	artini D	rilling	Type of Rig CME-75	
Ho	le Diai	neter		6"	D	rive W	/eight		140 lbs Auto-hammer Drop	30"
Ele	vation	Top of	Hole	187	L	ocatio	n		See Boring Location Map	
Elevation Feet	Depth Feet	Graphic Log w	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	Soil Description applies only to a location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type of Tests
125-				R7	50/5"	98	23		BEDROCK (Tm): continued. SANDSTONE, orange brown, moist to very moist, moderately hard, fine grained sand, thin silty sandstone bed.	
120⊉	65— 			S10 2	50/3"				 @ 65': same as above, increase in moisture to wet. @ 67.3': Groundwater encountered. 	
115-	70			R8	50/3"	106	22		@ 70': SANDSTONE, same as above, wet, thin silty sandstone bed.	
110-	75			S11 2	 50/5.5" 				@ 75': SANDSTONE wih some interbedded CLAYSTONE, orange brown, wet, moderately hard, fine grained sand.	
105-	80			R9	- 	88	38		 @ 80': CLAYSTONE, light brown to brown, moist, moderately hard. Total depth of boring: 80.9'. Groundwater encountered at 67.3' bgs during drilling. Boring backfilled with soil cuttings. 	
100-	85— — — 90—			-	-					
Samp S SP R Ri B Bl T TU	LE TYPE PLIT SPO NG SAM JLK SAM IBE SAM	ES: DON PLE MPLE IPLE	G GRABS C C ORES	SAMPLE SAMPLE	TY DS MD CN CR	PE OF T DIRE MAXI CONS CORR	ESTS: CT SHEA MUM DEI COLIDATI ROSION	AR NSITY ION	SA SIEVE ANALYSIS -200 % FINES PASSING SE SAND EQUIVALENT AL ATTERBERG LIMITS EI EXPANSION INDEX RV R VALUE	

. .

Da	te		3-4-09		EO	IEC	HN	ICA	L BORING LOG NB-3 Sheet <u>1</u> of <u>3</u>	
Pro	oject	602	184-002	Propo	osed Ci	ty Hal	- City	of Ne	wport Beach Logged / Sampled By JMP	
Dri	lling C la Diar	0. notor		6"		M Irivo M	artini [] Vojaht	Drilling	Type of Rig CME-75	30"
Ele	evation	Top of	f Hole	186'	L	ocatio	n		See Boring Location Map	
Elevation Feet	Depth Feet	Graphic Log	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION The Soil Description applies only to a location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type of Tests
185-					_	-			Terrace Deposits (Qt) @ 0': Silty SAND, brown, moist.	
		· . . . · . . . · . . .		S1	4 8 9			SM	@ 3': Silty SAND, brown, moist.	
180-	>			RI	7 15 21	116	12	SM	@ 5': Silty SAND, medium brown, slightly moist, medium dense, fine grained sand, thin silty clay bed.	
				S2	8 4 5				 BEDROCK: Monterev Formation (Tm) 6.5: Silty SANDSTONE, medium brown, slightly moist, medium dense, fine grained sand, thin silty clay bed. 7.5': same as above. 	
175-	10			R2	9 11 16	97	7		@ 10': SANDSTONE, orange brown, slightly moist, moderately hard, fine grained sand, thin silty sandstone bed.	
170-	15			S3	9 17 20				@ 15': SANDSTONE, light to medium brown, slightly moist, medium hard, fine grained sand.	
165-	20			R3	15 26 50/4.5"	92	24		@ 20': CLAYSTONE, light yellow to olive green, slightly moist, hard.	
				S4 B2	32 50/6"				@ 22.5': SILTSTONE and SANDSTONE interbedded, medium brown to orange brown, slightly moist. Archaeo Sample collected.	
160-				B3	32 50/6"				@ 25': SANDSTONE, light yellow brown, moderately hard, slightly moist, fine grained sand.	
	30									
Samp S SP R RI B BU T TU	LE TYPE PLIT SPO NG SAMI JLK SAM JBE SAM	S: ON PLE PLE PLE	G GRAB C CORE	SAMPLE SAMPLE	TYF DS MD CN CR	PE OF TI DIRE MAXII CONS CORR	ESTS: CT SHEA MUM DEN OLIDATI OSION	AR NSITY ON	SA SIEVE ANALYSIS SE SAND EQUIVALENT EI EXPANSION INDEX RV R VALUE	

D .	GEOTECHNICAL BORING LOG NB-3 Date 3-4-09 Project 602184-002 Proposed City Hall - City of Newport Beach Detilling Co. Marticl Defilies												
Da	te	6021	3-4-09	Prop				of No	Sheet <u>2</u> of <u>3</u> Logged / Sampled By JMP				
Dri	Iling C	co.	104-002			Ma	artini D	Drilling	Type of Rig				
Ho	le Dia	meter		6"	D	rive W	/eight		140 lbs Auto-hammer Drop	3 0"			
Ele	vatior	n Top of	Hole		L	ocatio	on 👘		See Boring Location Map				
Elevation Feet	Depth Feet	z Graphic د Log	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION The Soil Description applies only to a location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type of Tests			
155-				R4	20 50/6"	103	4		 BEDROCK (Tm): continued. (@ 30': SANDSTONE, light yellow to whte, slightly moist, moderately hard, fine grained sand, thin silty sandstone bed. 				
150-	35			S6	15 19 26				 @ 35': SANDSTONE, light brown to orange brown, slightly moist, moderately hard, oxidized, fine grained sand. @ 37.5h come or phone. 	CR, El			
145-	40			R5	50/3"	101	4		 @ 40': SANDSTONE, light brown to medium brown, slightly moist, hard, fine grained sand, thin silty sandstone bed. 	CR, EI			
140-	45			S8 2	26 50/1"				@ 45': SANDSTONE, light brown to brown to light gray, slightly moist, moderately hard, fine grained sand.				
135-	50			R6	21 50/4.5"	104	8		@ 50': SANDSTONE, orange brown, slightly moist, moderately hard, fine grained sand, thin silty sandstone bed.				
130-	55			S9	11 15 17				@ 55': SANDSTONE, orange brown, moist, moderately hard, fine grained sand.				
Samp S SF R RI B BU T TU	60 LE TYPE PLIT SPC NG SAM JLK SAM JBE SAM	ES: DON (PLE (MPLE IPLE	G GRAB S C CORE S	SAMPLE	TYF DS MD CN CR	PE OF TI DIRE MAXII CONS CORR	ESTS: CT SHEA MUM DEI COLIDATI	AR NSITY ON	SA SIEVE ANALYSIS -200 % FINES PASSING SE SAND EQUIVALENT AL ATTERBERG LIMITS EI EXPANSION INDEX RV R VALUE				

_				G	iEO	IEC	HN	CA	L BORING LOG NB-3	
Dat	te		3-4-09		_				Sheet <u>3</u> of <u>3</u>	
Dri	llina C	602 ⁻	184-002	Propo	bsed C	ty Hall M:	<u>l - City</u> artini Γ	of Nev Drilling	Type of Rig CMF-75	
Но	le Diar	neter		6"	D	rive W	/eight	, initial g	140 lbs Auto-hammer Drop	30"
Ele	vation	Top of	Hole	186'	L	ocatio	n		See Boring Location Map	
Elevation Feet	Depth Feet	Graphic Log	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION The Soil Description applies only to a location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type of Tests
125 <u>-</u>				R7	22 37 50/4.5"	105	16		 BEDROCK (Tm): continued. @ 60': SANDSTONE, medium brown, very moist to wet, moderately hard, fine grained sand, thin silty sandstone bed. @ 61.6': Groundwater encountered (11:45am). 	
120-	65			S10	21 23 32				@ 65': SANDSTONE, same as above, wet.	
115-	70			R8	22 31 50/3"	109	18		@ 70': SANDSTONE, same as above, wet, thin silty sandstone bed.	
110-	75			S11	20 50/6"				@ 75': SANDSTONE, same as above, wet.	
105-	80			R9	_50/4"		18		 @ 80': SANDSTONE, same as above, wet, thin silty sandstone bed. Total depth of boring: 80.4'. Groundwater encountered at 61.6' bgs during drilling (11:45am). Backfill boring with soil cuttings. 	
100-										
0.000	90									630.
SAMPL S SP R RIN B BU T TU	LIT SPO NG SAMI ILK SAM BE SAM	s: ON (PLE (PLE PLE	G GRAB	SAMPLE SAMPLE	TYF DS MD CN CR	E OF TE DIRE MAXIM CONS CORR	ESTS: CT SHEA MUM DEI OLIDATI OSION	AR NSITY ON	SA SIEVE ANALYSIS SE SAND EQUIVALENT EI EXPANSION INDEX RV R VALUE	

- -

Dat	te		3-6-09	G				GAI	_ DORING LOG ND-4 Sheet 1 of 2	
Pro	oject	6021	84-002	Propo	sed Ci	ty Hall	- City	of Nev	vport Beach Logged / Sampled By MAW	
Dri	lling C	o				Ma	artini D	rilling	Type of Rig CME-75	
Ho	le Diar	neter		6"	_ D	rive W	eight		140 lbs Auto-hammer Drop	
Ele	vation	1 Top of	Hole	1//	L	ocatio	n		See Boring Location Map	
Elevation Feet	Depth Feet	Graphic Log w	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION The Soil Description applies only to a location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type of Tests
175-	0								BEDROCK: Monterey Formation (Tm) @ 0: SAND, red brown, moist, fine grained sand.	
	-			sı	6 8 16			SM	@ 3': SAND with Silt, red brown, slightly moist, medium dense, fine grained sand, micaceous.	
170-	5			S2	6 11 13				@ 5': Silty SANDSTONE, red brown, slightly moist, medium dense, fine grained sand.	
				R1	7 21 31	117	9		@ 7.5': Silty SANDSTONE, red brown, slightly moist, medium dense, fine grained sand.	
165-	10			S3	3 6 7				@ 10': SANDSTONE with some Clay and Silt, red brown, some zones with less oxidation, slightly moist, dense, fine to medium grained sand.	
160-				R2 B1	11 18 39	112	16		@ 15': SANDSTONE with Silt, trace Clay, olive gray, zones of orange oxidation staining, moist, dense, fine grained sand.	
155-	20			S4	6 9 10				@ 20': Silty SANDSTONE, trace Clay, red brown, moist, medium dense, fine grained sand.	
100	-			S5 B2	7 8 13				@ 22.5': Silty SANDSTONE, trace Clay, red brown, moist, medium dense, fine grained sand.	
150-	25			R3	14 31 50	122	10		@ 25': SANDSTONE, trace Clay, red brown, moist, medium dense, fine grained sand.	
SAMP S SF R RI B BI	30	ES: DON 0 IPLE 0 IPLE	G GRABS	SAMPLE	TY DS ME CN	PE OF TI DIRE MAXII CONS	ESTS: CT SHEA MUM DEI COLIDATI	AR NSITY ON	SA SIEVE ANALYSIS -200 % FINES PASSING SE SAND EQUIVALENT AL ATTERBERG LIMITS EI EXPANSION INDEX	

. .

				G	EO.	TEC	HN		L BORING LOG NB-4	
Da	te		3-6-09						Sheet 2 of 2	
Pro	oject Ning (<u>602</u>	184-002	Propo	osed C	ity Hall	- City	of New	wport Beach Logged / Sampled By MAW	
Но	le Dia	meter		5"	D	rive W	eiaht	mining	140 lbs Auto-hammer Drop	30"
Ele	vatior	Top of	f Hole	177'	L	ocatio	n		See Boring Location Map	
Elevation Feet	Depth Feet	z Graphic v	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION The Soil Description applies only to a location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type of Tests
145-	30			S6	7 8 8				 @ 30': SANDSTONE, trace Clay, red brown, moist, medium dense, fine grained sand. @ 32': Sandy CLAYSTONE, olive gray, moist, harder drilling. 	
140-	35			R4 	12 50/6" 50/5"	109	9		 @ 35': SANDSTONE, poor sample recovery, mostly sluff. SAND, hard drilling. @ 37.5': Refusal, encounter cobbles 	
135-	40								Total depth of boring: 38'. No groundwater encountered. Boring backfilled with soil cuttings.	
130-	45									
125-					-					
120-	55 60									
SAMP S SF R RI B BL T TL	LE TYPE PLIT SPO NG SAM JLK SAM JBE SAM	ES: DON IPLE MPLE IPLE	G GRABS C CORES	AMPLE AMPLE	TY DS MD CN CR	PE OF TI DIRE MAXII CONS CORR	ESTS: CT SHE MUM DE OLIDATI	AR NSITY ION	SA SIEVE ANALYSIS -200 % FINES PASSING SE SAND EQUIVALENT AL ATTERBERG LIMITS EI EXPANSION INDEX RV R VALUE	

-				GE	OTE	CH	NIC	AL E	BORING LOG NB/MW-5	
Dat	te biect	6021	<u>3-10-09</u> 84-002	Prop		ity Hal	L. City		Vport Reach Logged / Sampled By JMP	
Dri	lling C	o.	04-002	ΤΟΡ		M	artini D	Drilling	Type of RigCME-75	
Ho	le Diar	neter		6"	D	rive W	leight		140 lbs Auto-hammer Drop	
Ele	vation	l lop of	Hole	177	·L	ocatio	on 		See Boring Location Map	
Elevation Feet	Depth	 Graphic Log 	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION The Soil Description applies only to a location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type of Tests
175-					-			SM	BEDROCK: Monterey Formation (Tm) @ 0': Silty SAND, orange brown, slightly moist.	
170-	5			S1	6 22 25				@ 5': SANDSTONE, orange brown, moist, dense, sand is fine grained.	
165-	10			RI	23 34 31	114	12		@ 10': SANDSTONE, same as above, thin silty sand bed.	
160-				S2	877				@ 15': Silty SANDSTONE, orange brown, moist, medium dense, sand is fine grained.	
155-	20			R2	28 38 40	103	14		@ 20': SANDSTONE, light brown to orange brown, moist, dense, sand is fine grained, black silty sand in sampler shoe.	
150-	25			S3	9 7 15				@ 25': SANDSTONE, light brown to orange brown, moist, dense, sand is fine grained, some interlayered black silty sand.	
SAMPI S SP R Rii B BL T TU	30 LE TYPE PLIT SPO NG SAMI JLK SAM IBE SAM	S: ON G PLE C PLE PLE	GRAB : CORE S	SAMPLE	TYI DS MD CN CR	PE OF TI DIRE MAXII CONS CORR	ests: CT Shea Mum Dei Olidati Osion	AR NSITY ON	SA SIEVE ANALYSIS -200 % FINES PASSING SE SAND EQUIVALENT AL ATTERBERG LIMITS EI EXPANSION INDEX RV R VALUE	

				GE	OTE	CH	NIC	AL E	BORING LOG NB/MW-5	
Dat	te		3-10-09						Sheet 2 of 3	
Dri	llina C	<u>6021</u> Co.	84-002	Propo	osed Ci	it <u>y Hal</u> M	<u>I - City</u> artini Γ	<u>of Nev</u> Drilling	wport Beach Logged 7 Sampled By <u>SMP</u> Type of Rig CMF-75	
Но	le Diai	meter		6"	D	rive W	Veight	, initig	140 lbs Auto-hammer Drop	30"
Ele	vatior	n Top of	Hole	177'	L	ocatio	n		See Boring Location Map	
Elevation Feet	Depth Feet	ح Graphic ەر	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION The Soil Description applies only to a location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type of Tests
145-				R3	22 50/6"	104	19		@ 30': Silty SANDSTONE with trace amounts of clay, light brown with patches of blacksand, very moist, dense, sand is fine grained.	
140-	35			S4	2 2 1				@ 35': Sandy SILTSTONE to silty fine SANDSTONE, dark blue gray, moist, soft/loose, some brown sand.	
135-	40			R4	13 27 50/3"	109	11		@ 40': SANDSTONE with interbedded CLAYSTONE, medium brown, moist, moderately hard to hard, sand is fine to medium grained.	
130-	45			S5	15 21 23				@ 45': SANDSTONE, light brown, slightly moist to moist, moderately hard, sand is fine to medium grained.	
125-	50			R5	16 48 50/3"	107	15		@ 50': SANDSTONE, light brown, moist to very moist, moderately hard to hard, sand is fine to medium grained, thin silty sandstone bed.	
120-	55			S6	15 33 50/5"				@ 55': SANDSTONE, light brown, very moist, moderately hard to hard, sand is fine to medium grained, sampler is wet.	
	60									4 h a
SAMPI S SP	LE TYPE LIT SPO	ES: DON (G GRAB	SAMPLE	TY DS	PE OF TI DIRE	ESTS: CT SHE	AR	SA SIEVE ANALYSIS -200 % FINES PASSING	1
R RI	NG SAM		CORE	SAMPLE	MD	MAXI		NSITY	SE SAND EQUIVALENT AL ATTERBERG LIMITS	
T TU	BE SAM	IPLE			CR	CORR	ROSION		RV R VALUE	·
				••• Thi	s log is a	part of a	report by	Leightor	and should not be used as a stand-alone document. * * * Pag	je 2 of 3

				GE	OTE	CHI	NIC	AL E	BORING LOG NB/MW-5	
Da	te		3-10-09						Sheet <u>3</u> of <u>3</u>	
Pro	oject	6021	184-002	Prop	osed C	ty Hal	- City	of Ne	wport Beach Logged / Sampled By JMP	
Dri	Iling C	;o				M	artini D	Drilling	Type of Rig CME-75	20"
Ho	le Diai	neter		6" 177	U	rive W	leight		140 lbs Auto-nammer Drop	
	valior		HOIE		L.		·/11			
Elevation Feet	Depth Feet	Graphic Log	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION The Soil Description applies only to a location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type of Tests
	60			R6	50/2"	115	13		BEDROCK (Tm): continued.	
	-								hard, sand is fine to medium grained, sampler is wet.	
115-	 65				-				 Total depth of boring: 61'. Refusal due to difficulty drilling. Groundwater encountered at 52.5' bgs during drilling. Groundwater monitoring well installed in boring. See well diagram for details. 	
	-				1					
110-					1					
				1						
	70									
105-					_					
	-				-					
					-					
	75				-					
					-					
100-					-					
	-				1					
					1					
	80									
95-	_									
	_				-					
	-				-					
	85			-	-					
	-				-					
90-	-				-					
					-					
	-				1					
SAMP	90						ESTE	<u> </u>	له معرف	٠
S SF	PLIT SPO	DON (G GRAB	SAMPLE	DS	DIRE	CT SHE	AR	SA SIEVE ANALYSIS -200 % FINES PASSING	
BBU	ULK SAM		C CORE S	AMPLE		CONS		ION	EI EXPANSION INDEX	
דדן	JBE SAN	IPLE			CR	CORF	OSION		RV R VALUE	

Da	te		3-6-09	Ŀ		IEC	HN		L BORING LOG NB-0 Sheet _1_ of _3	
Pro	oject	6021	84-002	Propo	osed Ci	ty Hall	- City	of Nev	wport Beach Logged / Sampled By MAW	
Dri	lling C le Diai	0. 		3"		Mi rive M	artini L Jeight	Drilling	I ype of RigCME-75	30"
Ele	vatior	Top of	Hole		L	ocatio	n		See Boring Location Map	
Elevation Feet	Depth Feet	Graphic Log w	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION The Soil Description applies only to a location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type of Tests
175-	0			-	-			ML	Terrace Deposits (Qt) @ 0: SILT, brown, moist.	
170-	5			S1 R1 S2	7 8 8 5 17 30 6 30 30	94	19		 BEDROCK: Mouterev Formation (Tm) (@ 3': SILTSTONE and CLAYSTONE, broken up claystone and siltstone clasts mottled, light orange and light gray, moist, some fine to medium grained sand layers to laminated silt and clay, highly weathered, oxidized, rootlets (@ 5': SILTSTONE and CLAYSTONE, broken up claystone and siltstone clasts mottled, light orange and light gray, moist, some fine to medium grained sand layers to laminated silt and clay, highly weathered, oxidized, rootlets (@ 7.5': Sandy SILTSTONE, orange brown, slightly moist, hard, weathered, oxidized, joints (1/8" wide) infilled with brown silt. 	
165-	10			R2	13 25 50	87	30		@ 10': Sandy Clayey SILTSTONE, gray with orange oxidized layers, slightly moist, hard, weathered, jointed.	
160-				S3	6 21 18				@ 15': Silty Clayey SANDSTONE, gray with orange oxidized layers, slightly moist, hard, fine grained sand, jointed.	
155-	20			R3 S4 B2	39 50/4" 15 50/6"	99	23		 @ 20': Concretionary layer, thin, SANDSTONE, light gray brown, dry, hard, fine grained. (Poor Recovery) @ 20.5' refusal, relocate boring 10 feet north, drill to 20 feet and retake 20 foot sample. @ 20': Silty CLAYSTONE, olive gray, with orange oxidized layers of fine grained sand, slightly moist, moderately hard, weathered, jointed, laminated. @ 22.5': Same as above, some thin interbeds of sand, fine to coarse grained sand, oxidized. 	
150-	25			S5 B3	9 13 13				@ 25': Same as above, Clayey SILTSTONE, gray with orange oxidized layers, laminated, some fine grained sand, joints.	
SAMP S SF R RI B BU T TU	30 Le type Plit spo Ng sam Jlk sam Jbe sam	ES: DON (PLE (IPLE IPLE	GRAB S C CORE S	AMPLE	TYI DS MD CN CR	PE OF T DIRE MAXI CONS CORF	ESTS: ECT SHEA MUM DE GOLIDATI ROSION	AR NSITY ION	SA SIEVE ANALYSIS -200 % FINES PASSING SE SAND EQUIVALENT AL ATTERBERG LIMITS EI EXPANSION INDEX RV R VALUE	

.

_	GEOTECHNICAL BORING LOG NB-6 ate 3-6-09 Sheet 2 of 3 roject 602184-002 Proposed City Hall - City of Newport Beach Logged / Sampled By MAW trilling Co Martici Drilling Martici Drilling MAK Target of Drilling													
Dat	te		3-6-09		<u> </u>				Sheet 2 of 3	,				
Dri	llina C	<u> </u>	84-002	Prop	osed Ci	ty Hall Ma	<u>- City</u> artini D	of Nev Drilling	wport Beach Logged 7 Sampled ByA					
Но	le Diar	neter		6"	D	rive W	/eight		140 lbs Auto-hammer Drop	30"				
Ele	vation	n Top of	Hole	176	<u> </u>	ocatio	n		See Boring Location Map					
Elevation Feet	Depth Feet	Graphic v Log	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION The Soil Description applies only to a location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type of Tests				
145-				R4	50/5.5"	84	25		 BEDROCK (Tm): continued. @ 30': Clayey SILTSTONE, gray and orange oxidized layers, laminated, slightly moist, hard, slightly weathered, trace jointing. 					
140-	35			S6 S7	6 13 26 50/5"				 @ 35': Clayey SILTSTONE, gray and orange oxidized layers, laminated, slightly moist, hard, slightly weathered, trace jointing. @ 35.5': perched groundwater encountered. @ 37.5': Clayey SILTSTONE, gray and orange oxidized layers, 					
135-	40			R5	29 50/5"	91	27		 aminated, slightly moist, hard, slightly weathered, trace jointing. @ 40': Sandy SILTSTONE, olive gray, slight moist, hard, some clay, fine grained sand, thinly layered. 					
¥ 130-	- 45			S8 2	22 20 50/1"				@ 45': Concretionary layer (1" thick) at top of sample. Sandy SILTSTONE with Clay, olive gray with orange oxidation, moist to wet, moderately hard, fine grained. Groundwater encountered.					
125-	50			R6	18 24 50/4"	86	30		@ 50': Clayey SILTSTONE, olive gray with orange oxidized layers, same as above, wet around sample.					
120-	55			S9 2	<pre>≤ 50/5.5"</pre>				@ 55': Clayey SILTSTONE, dark gray, very moist, moderately hard, jointed, joint surfaces lined with orange oxidation, concretionary layer (1/2" thick), wet around sample. Hard drilling.					
	60									¢۶.				
SAMPI S SP R RII B BU T TU	LE TYPE LIT SPO NG SAMI ILK SAM BE SAM	IS: ION G PLE C IPLE PLE	GRAB S CORE S	SAMPLE SAMPLE	TYF DS MD CN CR	PE OF TE DIRE MAXIM CONS CORR	ESTS: CT SHEA MUM DEM OLIDATIO OSION	AR NSITY ON	SA SIEVE ANALYSIS SE SAND EQUIVALENT EI EXPANSION INDEX RV R VALUE					

GEOTECHNICAL BORING LOG NB-6													
Da	te		3-6-09						Sheet <u>3</u> of <u>3</u>	,			
Pro	oject	6021	84-002	Propo	osed Ci	ty Hall	- City	of Nev	wport Beach Logged / Sampled By MAW				
Ho	ning C Diai ما	v0. meter		6"		IVIA Vivo M	artini L	prilling	140 lbs Auto-hammer	30"			
Ele	vatior	n Top of	Hole	176'	- L	ocatio	n		See Boring Location Map				
Elevation Feet	Depth Feet	Z Graphic v	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION The Soil Description applies only to a location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type of Tests			
115-	-			R7	50/5.5"	90	24		 BEDROCK (Tm): continued. @ 60': Silty CLAYSTONE, dark gray, very hard, fine grained sand, silicious zones, jointed, wet along some joint surfaces. 				
110-	65			S10	16 50/4"				 @ 65': Sandy Clayey SILTSTONE, dark gray, moist, very hard, silicious zones, fine grained sand. @ 66.5': Refusal due to hard drilling. 				
105-									Total depth of boring: 66.5'. Refusal due to difficulty drilling. Groundwater encountered at 45' bgs during drilling. Boring left open for groundwater reading. Groundwater tagged at 31' bgs (4:00pm)				
100-				-	-								
95-	80				-								
90-	85			-	-								
	90									alles.			
SAMF S SI R R B B T T	LE TYPE PLIT SPO ING SAM ULK SAM JBE SAM	ES: DON IPLE MPLE MPLE	G GRAB C CORE	SAMPLE SAMPLE	TY DS MD CN CR	PE OF T DIRE MAXI CONS CORF	ESTS: CT SHE MUM DE CLIDAT ROSION	AR NSITY ION	SA SIEVE ANALYSIS -200 % FINES PASSING SE SAND EQUIVALENT AL ATTERBERG LIMITS EI EXPANSION INDEX RV R VALUE				

Da	to		3-6-09	G	iEO	IEC	HNI		L BORING LOG NB-7						
Pro	oject	6021	184-002	Propo	 osed Ci	itv Hall	- Citv	of Nev	wport Beach Logged / Sampled By MAW						
Dri	illing C	o				Ma	artini D	Drilling	Type of Rig CME-75						
Ho	le Dia	neter		6"	D	rive W	/eight		140 lbs Auto-hammer Drop Drop30"						
Ele	evation	lop of	Hole		L	ocatio	n 		See Boring Location Map						
Elevation Feet	Depth Feet	Graphic Log w	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION The Soil Description applies only to a location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type of Tests					
160-	0								BEDROCK: Monterey Formation (Tm) @ 0': Silty SANDSTONE.						
	_			sı	3 9 11				@ 3': Silty SANDSTONE, orange red brown, slightly moist, medium dense.						
155-	5			R1	23 26 42	120	8		@ 5': Silty SANDSTONE, orange red brown, slightly moist, dense.						
133	-			S2	10 12 10				@ 7.5': Silty SANDSTONE, orange brown, moist, dense, oxidized, fine to medium grained with some coarse grained sand.						
150-	10			R2	26 39 37	119	8		@ 10': Silty SANDSTONE, orange brown, moist, dense, oxidized, fine to medium grained with some coarse grained sand.						
145-				S3 B1	4 5 6				@ 15': Silty SANDSTONE, orange brown, moist, medium dense, oxidized, fine to medium grained with some coarse grained sand.						
140-	20			R3	5 11 15	105	4		@ 20': Silty SANDSTONE, orange brown, moist, medium dense, oxidized, fine to medium grained with some coarse grained sand.						
	-			S4 B2	3 7 6				@ 22.5': SANDSTONE, light orange brown, slightly moist, medium dense, fine to medium grained sand, some silt.						
135-	25 			S5 B3	3 6 6				@ 25': Silty SANDSTONE, orange brown, slightly moist, medium dense, fine to medium grained sand, some silt.						
SAMP S SI R RI B BI T TU	30 PLE TYPE PLIT SPC ING SAM ULK SAM JBE SAM	ES: DON IPLE IPLE IPLE	G GRAB S C CORE S	SAMPLE	TY DS MC CN CR	PE OF T DIRE MAXII CONS CORF	ESTS: ECT SHEA MUM DE SOLIDATI	AR NSITY ION	SA SIEVE ANALYSIS -200 % FINES PASSING SE SAND EQUIVALENT AL ATTERBERG LIMITS EI EXPANSION INDEX RV R VALUE						

Da	te		3-6-09	Ŀ	EO	IEC	HN	CA	L BORING LOG NB-/ Sheet _2_ of _2_	
Pro	oject	602	184-002	Propo	osed Ci	ty Hall	- City	of Nev	wport Beach Logged / Sampled By MAV	/
Dri Ho	lling C le Diar	0. neter		6"		Ma	artini D Jeight	Drilling	140 lbs Auto-bammer Dror	30"
Ele	vatior	Top of	Hole	162'	— ĭ	ocatio	n		See Boring Location Map	
Elevation Feet	Depth Feet	Graphic Log	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION The Soil Description applies only to a location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type of Tests
130-	30			R4	3 14 25	110	7		@ 30': Clayey Silty SANDSTONE, orange brown mottled with gray, moist, medium dense, medium grained sand, some fine to coarse grained sand. well cemented.	
125-	35			S6 S7	7 23 31 13 11				@ 35': SAND with Silt, orange brown, moist, fine grained sand,	
120-	40								Total depth of boring 39'. No groundwater encountered. Coverted boring to dry well (screen bottom 5'). Well removed and backfilled on 3-7-09.	
115-	45 - - -									
110-	50									
105-	55 - - - 60									
SAMP	LE TYPE	S:			TY		ESTS:		-	
S SF R RI B BU T TU	PLIT SPO NG SAM JLK SAN IBE SAM	ON O PLE O IPLE PLE	GRABS CCORES	AMPLE	DS MD CN CR	DIRE MAXII CONS CORR	CT SHEA MUM DEI OLIDATI OSION	AR NSITY ON	SA SIEVE ANALYSIS -200 % FINES PASSING SE SAND EQUIVALENT AL ATTERBERG LIMITS EI EXPANSION INDEX RV R VALUE	

. .

Date 3-10-09 Sheet 1 of 3												
Dat	te	6001	3-10-09			4.11al	0:4	- 6 N I	Sheet <u>1</u> of <u>3</u> Logged / Sampled By JMP			
Dri	lling (<u> </u>	184-002	Propo	osed C	<u>ty Hal</u> Ma	artini D	or ivev Prillina	Type of Rig CME-75			
Но	le Dia	meter		6"	D	rive W	/eight		140 lbs Auto-hammer Drop	30"		
Ele	vatio	n Top of	Hole	183'	L	ocatio	n		See Boring Location Map			
Elevation Feet	Depth Feet	z Graphic د Log	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION The Soil Description applies only to a location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type of Tests		
100					-			SM	Terrace Deposits (Qt) @ 0': Sandy CLAY, brown, moist, soft.			
180-	-			S1	8 11 15				BEDROCK: Monterey Formation (Tm) @ 3': Silty SANDSTONE, orange brown, slightly moist, medium dense, sand is fine grained.			
	5			R1	14 28 37	114	8		@ 5': SANDSTONE, light brown to orange brown, dense, slightly moist, sand is fine grained, thin silty sand bed.			
175-	-			S2	11 15 15				@ 7.5': SANDSTONE, light brown to orange brown, dense, slightly moist, sand is fine grained, thin silty sand bed.			
	10 			R2	8 23 50/5"	106	7		@ 10': SANDSTONE, orange brown, slightly moist, dense, sand is fine grained, thin silty sand bed.			
170-					-				@ 13': slightly more difficult drilling.			
				S3	7 13 18				@ 15': CLAYSTONE, light gray to orange brown, slightly moist, moderately hard.			
165-	-			B1	-							
				R3	23 50/5.5"	101	8		@ 20': SANDSTONE, light gray to orange brown, slightly moist, hard, sand is fine grained, thin silty sandstone bed.			
160-	-			S4 B2	9 14 25				@ 22.5': Silty CLAYSTONE, light gray to orange brown, moderately hard, slightly moist.			
				R4	10 28 36	86	33		@ 25': CLAYSTONE, light gray to orange brown, slightly moist, moderately hard to hard.			
155-				В3	-							
SAMP	LE TYP	ES:			TY	PE OF T	ESTS:					
S SPLIT SPOON G							SA SIEVE ANALYSIS -200 % FINES PASSING SE SAND EQUIVALENT AL ATTERBERG LIMITS EI EXPANSION INDEX RV R VALUE					

Date 3-10-09 Sheet 2 of 3												
Dat	ie	6021	3-10-09	Brond			City	of No	Logged / Sampled By JMP			
Dri	lling C	:o.	104-002		JSEU UI	Ma	artini D	Drilling	Type of RigCME-75			
Но	le Diar	neter		5"	D	rive W	/eight		140 lbs Auto-hammer Drop	30"		
Ele	vatior	Top of	Hole		L	ocatio	n		See Boring Location Map			
Elevation Feet	Depth Feet	Graphic Log ø	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION The Soil Description applies only to a location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type of Tests		
150-				S5	12 18 21				 BEDROCK (Tm): continued. @ 30': Interbedded silty fine SANDSTONE and CLAYSTONE, orange brown to light gray, slightly moist, moderately hard. 			
	35			R5	10 28 50/2.5"	101	14		@ 35': Interbedded silty fine SANDSTONE and CLAYSTONE, orange brown to light gray, slightly moist, moderately hard.			
145-				S6	21 27 50/5"				@ 37.5': Silty fine SANDSTONE, light gray to light brown, slightly moist, moderately hard to hard, laminated.			
	40			R6	16 50/5"	93	14		@ 40': Silty fine SANDSTONE, light gray to light brown, slightly moist, moderately hard to hard, laminated.			
140-	45			S7 2	17 50/4.5"				@ 45': CLAYSTONE, brown, slightly moist, moderately hard, some SANDSTONE, portion of sample is oxidized.			
130-				R7	9 20 50/6"	97	17		@ 50': Interbedded SANDSTONE and CLAYSTONE, light yellow brown to brown, moist, moderately hard to hard.			
125-	55 			S8 2	50/4"				@ 55': SANDSTONE, light gray to orange brown, very moist, hard, sand is fine grained, some medium grained sand.			
SAMP S SF R RI B BI T TU	60 SAMPLE TYPES: TYPE OF TESTS: S SPLIT SPOON G GRAB SAMPLE DS DIRECT SHEAR SA SIEVE ANALYSIS -200 % FINES PASSING R RING SAMPLE C CORE SAMPLE MD MAXIMUM DENSITY SE SAND EQUIVALENT AL ATTERBERG LIMITS B BULK SAMPLE CN CONSOLIDATION EI EXPANSION INDEX EVENTS EVENTS T TUBE SAMPLE CR CORROSION RV R VALUE EVENTS											

GEOTECHNICAL BORING LOG NB/MW-8												
Dat	te		3-10-09						Sheet <u>3</u> of <u>3</u>			
Pro	oject	602	184-002	Propo	osed Ci	ty Hall	- City	of Nev	wport Beach Logged / Sampled By JMP			
Dri		0. 		6"			artini L	rilling	Type of Rig CME-75	30"		
Ele	vation	Top of	Hole	183'	- J	ocatio	n		See Boring Location Map			
	Tution											
Elevation Feet	Depth Feet	Graphic Log w	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION The Soil Description applies only to a location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type of Tests		
120-				R8	19 50/3"	100	22		 BEDROCK (Tm): continued. @ 60': Silty SANDSTONE, orange brown, highly oxidized, slightly moist to moist, hard, laminated. 			
115	65			S9 X	50/6"				@ 65': SANDSTONE, light brown to orange brown, wet, hard, sand is fine to medium grained.			
115-	70			R9	50/4"	105	21		@ 70': SANDSTONE, light brown to orange brown, wet, hard, sand is fine to medium grained., thin silty sandstone bed.			
110-	75			S10	50/6"				@ 75': SANDSTONE, light brown to orange brown, wet, hard, sand is fine to medium grained, thin silty sandstone bed.			
105-				R10	50/3"	_106	22		7 @ 80': SANDSTONE, light brown to orange brown, wet, hard, sand is fine to medium grained, thin silty sandstone bed., thin silty			
100-									sandstone bed. Total depth of boring: 80.3'. Groundwater encountered at 57.2' bgs during drilling. Groundwater monitoring well installed in boring. See well diagram for details.			
95-	85 				-							
SAMP		S:			ΤY	PE OF T	ESTS:					
S SF R RI B BU T TU	PLIT SPO NG SAM JLK SAM JBE SAM	DON IPLE IPLE IPLE	G GRAB	SAMPLE SAMPLE	DS ME CN CR	DIRE MAXI CONS CORF	ECT SHE MUM DE SOLIDAT ROSION	AR NSITY ION	SA SIEVE ANALYSIS -200 % FINES PASSING SE SAND EQUIVALENT AL ATTERBERG LIMITS EI EXPANSION INDEX RV R VALUE			

Date <u>3-27-08</u> Sheet <u>1</u> of <u>2</u>														
Pro	oject	6021	84-001	Prop	osed N	ewpor	port Beach City Hall Logged / Sampled By SP							
Dri	illing (Co				Marti	ni Drill	ing Co	Type of Rig CME-75					
HO Fle	ie Dia	meter a Top of	Hole	8" 170	U	Drive W	Veight		140 lb Auto-Hammer Drop	<u> 30" </u>				
					_									
Elevation Feet	Depth Feet	z Graphic ø	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION The Soil Description applies only to a location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type of Tests				
	0								BEDROCK: Monterey Formation (Tm)					
					1				@ 0': Sandy CLAY/Clayey SAND, orange brown, damp, fine grained					
175-				R-1	8 15 27	119	12		@ 5': Sandy CLAY, orange brown, damp, very stiff, fine grained sand.					
				R-2	8 9 12	96	3		@ 10': Silty SANDSTONE, light yellow brown, damp, medium dense, fine grained sand.					
165-				S-1	4 21 37				@ 15': Silty SANDSTONE, light yellow brown, damp, dense, fine grained sand, trace of well rounded gravel (pebbles).					
160-	_			Bag-1	T .									
	20			R-3	15 50/5"	101	3		@ 20': SANDSTONE, light yellow brown, damp, hard, fine grained sand, very poorly cemented, friable, breaks down in hand.	DS				
155-				S-2	36 50/4"				@ 25': SANDSTONE, light yellow brown, damp, hard, fine grained sand, poorly cemented, friable.					
150-	-				-									
SAMP S SF R RI B BU T TU	30 LE TYPE PLIT SPO NG SAM JLK SAM JBE SAM	ES: DON (IPLE (MPLE 1PLE	G GRAB	SAMPLE	TY DS MD CN CR	PE OF T DIRE MAXI CONS CORR	ESTS: CT SHE/ MUM DEI OLIDATI	AR NSITY ION	SA SIEVE ANALYSIS -200 % FINES PASSING SE SAND EQUIVALENT AL ATTERBERG LIMITS EI EXPANSION INDEX RV R VALUE					

GEOTECHNICAL BORING LOG B-1 Date 3-27-08 Sheet 2 of 2													
Dat	te	602	3-27-08	Duan			D • • • •	0:4	Sheet <u>2</u> of <u>2</u> Logged / Sampled By SP	Sheet <u>2</u> of <u>2</u> Logged / Sampled By SP			
Dri	lling C	<u> </u>	84-001	Prop	osed IN	ewpori Marti	ni Drill	n City ina Co	Hall Cogged Feampled Dy				
Ho	le Diar	neter		8"	D	rive V	/eight		140 lb Auto-Hammer Drop	140 lb Auto-Hammer Drop 30"			
Ele	vation	I Top of	Hole	179	<u> </u>	ocatio	n		See Boring Location Map				
Elevation Feet	Depth Feet	z Graphic دم دم	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	Soil Description applies only to a location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type of Tests			
145-				R-4	50/6"	101	2		@ 30': SANDSTONE, light yellow brown, damp, very dense, fine grained sand.				
145	35			S-3	s 50/2"				@ 35': SANDSTONE, light yellow brown, damp, very dense, fine grained sand.				
140-				R-5	4 25 39	102	10		@ 40': Silty SANDSTONE, mottled olive grey and yellow to orange brown, damp, hard, fine grained sand, highly fractured, fractures well healed with very fine grained sand with trace clay, moderately cemented, friable, thinly bedded, trace siltstone rock fragments.				
135-	- - 45								Total depth of boring: 41.5 feet No groundwater was encountered during drilling Borehole backfilled with soil cuttings and tamped				
130-													
125-					-								
120-	-				-								
SAMP S SF R RI B BI T TL	60 PLE TYPE PLIT SPC NG SAM JLK SAM JBE SAM	ES: DON IPLE IPLE IPLE	G GRAB C CORE	SAMPLE SAMPLE	TY DS ME CN CR	PE OF T DIRE MAXI CONS CORF	ESTS: ECT SHE MUM DE SOLIDAT ROSION	AR NSITY ION	SA SIEVE ANALYSIS -200 % FINES PASSING SE SAND EQUIVALENT AL ATTERBERG LIMITS EI EXPANSION INDEX RV R VALUE				

.....

Da	ite		<u>3-27-08</u>		GEC		CHN		L BORING LOG B-2 Sheet <u>1</u> of <u>2</u>						
Pro	oject	602*	184-001	Prop	osed N	ewpor	t Beac	h City	Hall Logged / Sampled By						
Dri	illing Jo Dia	Co.		0"	F	Marti	ni Drill	ling Co	rp. Type of Rig CME-75	20"					
Ele	evatio	n Top of	Hole		L	ocatio	veignt on		See Boring Location Map						
Elevation Feet	Depth Feet	z Graphic w	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION The Soil Description applies only to a location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type of Tests					
100	0—			-	-			CL	Quaternary Terrace Deposits (Qt)						
190-				-	+				@ 0': Sandy CLAY, dark brown, damp, fine grained sand.						
185-	5			R-1	3 5 8	101	14	SM/SC	@ 5': Silty SAND to Clayey SAND, light to dark brown, damp, loose, fine grained sand.						
				P 2	10	100	6		BEDROCK: Monterey Formation (Tm)	DS					
180-	-			Bag-1	22	100	0		@ 10': SANDSTONE, yellow brown, damp, medium dense, fine grained sand, interbedded with sandy siltstone.						
175-	15 			R-3	26 35 50	67	27		@ 15': Sandy CLAYSTONE, mottled yellow brown to dark reddish brown, damp, fine to medium grained sand grades to Silty SAND, light yellow brown to red brown sand, damp, very dense, fine grained sand.						
170-				S-1	20 33 42				@ 20': SANDSTONE, orange brown to light yellow brown, damp, moderately hard, highly weathered, heavily oxidized, very poorly cemented, friable, breaks down in hand, fine grained sand.						
165-	25			R-4	6 30 50/5"	103	3		@ 25': SANDSTONE, yellow brown, damp, hard, fine grained sand poorly cemented, friable.						
SAMP S SF R RI B BU T TU	30 30 AMPLE TYPES: TYPE OF TESTS: SPLIT SPOON G GRAB SAMPLE DS DIRECT SHEAR SA SIEVE ANALYSIS -200 % FINES PASSING RING SAMPLE C CORE SAMPLE MD MAXIMUM DENSITY SE SAND EQUIVALENT AL ATTERBERG LIMITS BULK SAMPLE CN CONSOLIDATION EI EXPANSION INDEX TUBE SAMPLE CR CORROSION RV R VALUE														

. . .

Da	Date 3-27-08 Sheet 2													
Pro	oject	602	184-001	Pro	pose	ed Ne	ewport	Beach	n Citv	Hall Logged / Sampled By _SP				
Dri	lling C	o					Marti	ni Drilli	ng Co	rp. Type of Rig CME-75				
Ho	le Diar	neter		8"	41	D	rive W	leight		140 lb Auto-Hammer Drop				
Ele	vatior		Hole	19	1.		ocatio	n 		See Boring Location Map	See Boiling Location Map			
Elevation Feet	Depth Feet	ح Graphic س	Attitudes	Sample No.	Blows	Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION The Soil Description applies only to a location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type of Tests			
160-				S-2	5	37 50/5"				@ 30': SANDSTONE, light yellow brown, damp, hard, fine grained sand, massive, poorly cemented, friable.				
155-	35			R-5	- 5 	50/4"	114	3		@ 35': SANDSTONE, light yellow brown, damp, hard, fine grained sand, massive, poorly cemented, friable.				
150-	40			S-3	5	35 50/4"				@ 40': SANDSTONE, light yellow brown, damp, hard, fine grained sand, massive, poorly cemented, friable.				
145-	45 			R-6	5	50/4"	99	5		@ 45': SANDSTONE, light yellow brown, damp, hard, fine grained sand, massive, poorly cemented, friable.				
140-				S-4	× 5	60/5"				@ 50': SANDSTONE, light orange brown, damp, hard, fine grained sand, trace siltstone rock fragments.				
135-	55									Total depth of boring: 51.5 feet No groundwater was encountered during drilling Borehole backfilled with soil cuttings and tamped				
SAMP S SF R RI	OU LE TYPE PLIT SPC	ES: DON IPLE	G GRAB C CORE	SAMPLE		TYI DS MD	PE OF T DIRE MAXI	ESTS: CT SHE MUM DE	AR NSITY	SA SIEVE ANALYSIS -200 % FINES PASSING SE SAND EQUIVALENT AL ATTERBERG LIMITS	e a			
B B T TU	BULK SAMPLE CN CONSOLIDATION EI EXPANSION INDEX TUBE SAMPLE CR CORROSION RV R VALUE													
Da	te		3-27-08		GEC		CHN	IICA	AL BORING LOG B-3 Sheet <u>1</u> of <u>2</u>					
------------------------------	---	------------------------------	-----------	------------------	-----------------------	-------------------------------	--------------------------------	---------------------------	--	---------------				
Pro	oject	6021	84-001	Prop	osed N	ewport	t Beach	n City	Hall Logged / Sampled By SP					
Dri	illing C Ja Diar	io. Motor		8"		Marti	ni Drilli Vojabt	ing Co	Type of Rig CME-75	30"				
Ele	evation	Top of	Hole	187	U	ocatio	neight Sn		See Boring Location Map					
						ocure								
Elevation Feet	Depth Feet	Graphic Log	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION The Soil Description applies only to a location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type of Tests				
	0				-				Quaternary Terrace deposits (Qt)					
185-				-	-				@ 0': Sandy CLAY, dark brown, moist, fine grained sand.					
180-	5			R-1	7 15 31	105	7		@ 5': Silty SAND to Clayey SAND, dark brown, damp, medium dense, fine grained sand.					
	_[BEDROCK: Monterey Formation (Tm)					
175-				R-2	27 50/6"	105	6		@ 10': Silty SANDSTONE, light orange brown, damp, very dense, fine grained sand, trace clay pods in matrix.					
170-	15			S-1	20 33 50				@ 15': SANDSTONE, light orange brown, damp, moderately hard, fine grained sand, very poorly cemented, highly weathered, highly oxidized, friable, breaks down in hand.					
165-	20			R-3	15 16 41	95	19		@ 20': SANDSTONE, light orange brown to olive grey with orange mottling, damp, hard, fine grained sand, poorly cemented, friable, highly fractured, fractures well healed with greyish white, fine grained, sandy clay, some siltstone rock fragments and lenses of greyish white sand.					
160-	25			S-2 Bag-1	50/6"				@ 25': SANDSTONE, light yellow brown, damp, hard, fine grained sand, poorly cemented, friable.					
SAMP	LE TYPE	S:			TY		ESTS:							
S SF R RI B BI T TL	PLIT SPO ING SAM ULK SAM JBE SAM	ON C PLE C IPLE PLE	G GRAB	SAMPLE SAMPLE	DS MD CN CR	DIRE MAXII CONS CORR	CT SHEA MUM DEI COLIDATI	NR NSITY ON	SA SIEVE ANALYSIS -200 % FINES PASSING SE SAND EQUIVALENT AL ATTERBERG LIMITS EI EXPANSION INDEX RV R VALUE					

				(GEO)TE(CHN	IICA	L BORING LOG B-3	
Da	te		3 -27- 08						Sheet 2 of 2	
Pro	oject	<u>602</u>	184-001	Propo	osed No	ewport	Beac	n City	Hall Logged / Sampled By SP	
Ho	lung C le Diai	vo. meter		8"		rive W	ni Drilli Ieiaht	ing Co	140 lb Auto-Hammer Drop	30"
Ele	vatior	n Top of	Hole	187'	– Ľ	ocatio	n		See Boring Location Map	
Elevation Feet	Depth Feet	Graphic Log	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION The Soil Description applies only to a location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions	Type of Tests
	30	N S							between soil types may be gradual.	
155-	-			R-4	50/1"	102	9		@ 30': SANDSTONE, light yellow brown, damp, hard, fine grained sand, some silt, poorly cemented, friable.	DS
150-	35			S-3	20 50/6"				@ 35': SANDSTONE, light yellow brown, damp, hard, fine grained sand, trace gravel.	
145-	40			R-5	11 50/6"	97	10		@ 40': SANDSTONE, light yellow brown, damp, hard, fine grained sand, trace gravel, poorly cemented, friable, iron nodules and concretions.	
140-	45 50			S-4	15 12 25 50/4"				 @ 45': SANDSTONE/CLAYSTONE, dark brown with yellow and grey mottling, damp, hard, fine grained sand, thinly bedded, poorly cemented, friable. @ 50': SANDSTONE/CLAYSTONE, mottled dark brown with yellow and grey, damp, hard, fine grained sand, chaotic assemblage of sandstone and claystone, disrupted bedding, poorly cemented, trace fine gravel. 	
135-					-				Total depth of boring: 50.5 feet No groundwater was encountered during drilling Borehole backfilled with soil cuttings and tamped	
SAMP S SF R RI B BU T TU	60 LE TYPE PLIT SPC NG SAM JLK SAM JBE SAM	ES: DON IPLE APLE IPLE	G GRAB S C CORE S	SAMPLE SAMPLE	TY DS MD CN CR	PE OF TI DIRE MAXII CONS CORR	ESTS: CT SHE MUM DE OLIDATI	AR NSITY ION	SA SIEVE ANALYSIS -200 % FINES PASSING SE SAND EQUIVALENT AL ATTERBERG LIMITS EI EXPANSION INDEX RV R VALUE	

Dat			3 27 09	(σEC	DIE	CHN		AL BORING LOG B-4	
Pro	ject	602	<u>-27-08</u> 184-001	Prope	 sed No	ewnor	t Reac	h Citv	Hall Logged / Sampled By SP	
Dri	lling C	o				Marti	ni Drill	ing Co	rp Type of Rig CME-75	
Ho	le Dia	meter		8"	_ D	rive W	leight		140 lb Auto-Hammer Drop	30"
Ele	vatior	1 lop of	Hole		L	ocatio	on 		See Boring Location Map	
Elevation Feet	Depth Feet	к Graphic и	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION The Soil Description applies only to a location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type of Tests
	0			Bag-1					BEDROCK: Monterey Formation (Tm), weathered	
									@ 0': Sandy CLAYSTONE, dark brown, damp, fine grained sand. BEDROCK: Monterey Formation (Tm)	
165-									@ 1': Clayey Gravelly SANDSTONE, dark brown, damp, hard/dense, fine grained sand, fine gravel.	
105	5			R-1	22 25 32	120	7		@ 5': Clayey Gravelly SANDSTONE, dark brown, damp, hard/dense, fine grained sand, fine gravel.	
	 								@ 7': Encounter gravel bed.	
160-				R-2	41 50/5"	101	6		@ 10': Silty SANDSTONE, orange brown, moist, very dense, fine grained sand some siltstone rock fragments.	
155-				S-1	21 30 35				@ 15': SANDSTONE, light orange brown, damp, moderately hard, fine grained sand, very poorly cemented, friable, breaks down in hand.	
150-	20			R-3	13 50/5"	98	6		@ 20': SANDSTONE, orange brown, damp, hard, fine grained sand, fractured, fractures well healed with dark reddish brown clay, poorly cemented, friable.	
145-	25			S-2	17 28 33				@ 25': SANDSTONE, hard, yellow grey, damp, fine grained sand, poorly cemented, friable.	
140-	30									
Sampl S Spi R Rim B BU T TU	LIT SPO NG SAM LK SAM BE SAM	:S: PON (PLE (IPLE IPLE	G GRAB S C CORE S	SAMPLE SAMPLE	TYF DS MD CN CR	PE OF TE DIRE MAXIM CONS CORR	ESTS: CT SHEA MUM DEI OLIDATI OSION	AR NSITY ON	SA SIEVE ANALYSIS SE SAND EQUIVALENT EI EXPANSION INDEX RV R VALUE	

					GEO	TE	CHN		L BORING LOG B-4	
Dat	te		3-27-08		—				Sheet 2 of 2	
Dri	llina (<u>602</u> Co .	184-001	Propo	osed Ne	ewport Marti	<u>Beacl</u> ni Drill	h City ina Co	rp. Type of Rig CME-75	
Ho	le Dia	meter		8"	D	rive W	/eight		140 lb Auto-Hammer Drop	30"
Ele	vatior	1 Top of	fHole	170'	_ L	ocatio	n		See Boring Location Map	
Elevation Feet	Depth Feet	z Graphic در در	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION The Soil Description applies only to a location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type of Tests
	30			R-4	37 50/3"	89	22		@ 30': Clayey SANDSTONE, orange brown, damp, hard, fine grained sand, poorly cemented, friable, contains olive brown siltstone rock fragments.	
135-	35			S-3	7 22 22 22				@ 35': SANDSTONE interbedded with shale, damp, hard, fine grained sand.	
130-	40 -			R-5	9 36 45	90	26		@ 40': SANDTONE, grey brown with yellow motting, damp, hard, fine grained sand, massive to thinly bedded clayey sandy silt, slightly fractured, fractures well healed with dark brown clay, some manganese development along fractures.	
125-	45								Total depth of boring: 41.5 feet No groundwater was encountered during drilling Borehole backfilled with soil cuttings and tamped	
120-	50									
115-	 55 				-					
Sampi S SP R Rii B BL T TU	60 LE TYPE PLIT SPC NG SAM JLK SAM JBE SAM	ES: DON IPLE MPLE MPLE	G GRAB C CORE	SAMPLE	TY DS MD CN CR	PE OF TI DIRE MAXII CONS	ESTS: CT SHE MUM DE OLIDATI	AR NSITY ION	SA SIEVE ANALYSIS -200 % FINES PASSING SE SAND EQUIVALENT AL ATTERBERG LIMITS EI EXPANSION INDEX RV R VALUE	

				(GEC)TE(CHN	IICA	AL BORING LOG B-5
Da	te		3-27-08						Sheet <u>1</u> of <u>2</u>
Pro Dri	oject illina (<u>602</u>	<u>184-001</u>	Propo	osed N	ewport Marti	Beach	h City	Hall Logged / Sampled By SP
Но	le Dia	meter		8"	D	rive W	leiaht		140 lb Auto-Hammer Drop 30"
Ele	vatio	n Top of	Hole	165'	L	ocatio	n		See Boring Location Map
Elevation Feet	Depth Feet	z Graphic v	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION \$ The Soil Description applies only to a location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual. \$
	· _			-					BEDROCK: Monterey Formation (Tm)
	-								 @0': Sandy CLAYSTONE, dark brown, moist, fine grained sand. @ 1': Sandy CLAYSTONE to Clayey SANDSTONE, dark brown, moist, dense, fine grained sand.
160-	5 			R-1	11 20 35	124	11		@ 5': Sandy CLAYSTONE to Clayey SANDSTONE, dark brown, moist, dense, fine grained sand.
155-				R-2	9 15 38	82	35		@ 10': SANDSTONE to thinly bedded Clayey SILTSTONE, olive orange brown, damp, hard, fine grained sand, thinly bedded siltstone within massive sandstone, sandstone moderately fractured, fractures well healed with iron oxide.
150-				R-3	11 21 50/3"	82	34		@ 15': SANDSTONE to thinly bedded Clayey SILTSTONE, olive orange brown, damp, hard, fine grained sand, alternating thin beds of sandstone and siltstone, highly weathered and oxidized, moderate fracturing, fractures well healed with iron oxide and manganese.
145-	20			S-1	6 7 11				@ 20': SANDSTONE, light orange brown, damp, moderately hard, fine grained sand, trace amount of clay in matrix, poorly cemented, friable, highly oxidized, massive.
140-				R-4	6 27 33	108	11		@ 25': SANDSTONE, orange brown, moist, dense, fine grained sand, poorly cemented, highly oxidized, friable, massive.
135-	30—								@ 30': SANDSTONE, white grey, damp, hard, fine grained sand, poorly cemented, friable.
SAMP S SF R RI B BU T TU	LE TYPE PLIT SPC NG SAM JLK SAM JBE SAM	ES: DON (IPLE (IPLE	GRAB S	AMPLE AMPLE	TYI DS MD CN CR	PE OF TE DIRE MAXIN CONS CORR	ESTS: CT SHEA MUM DEM OLIDATIO OSION	AR NSITY ON	SA SIEVE ANALYSIS -200 % FINES PASSING SE SAND EQUIVALENT AL ATTERBERG LIMITS EI EXPANSION INDEX RV R VALUE

Da	te		3-27-08	ł	GEC) E	CHN	IICA	L BURING LUG B-5 Sheet 2 of 2	
Pro	oject	602	184-001	Pror	oosed N	ewpor	Beacl	n Citv	Hall Logged / Sampled By SP	
Dri	illing C	o				Marti	ni Drilli	ing Co	rp. Type of Rig CME-75	
Ho	le Diar	neter		8"	[Orive V	leight		140 lb Auto-Hammer Drop	30"
Ele	evation	Торо	Hole	168	<u>5'</u>	.ocatio	n		See Boring Location Map	
Elevation Feet	Depth Feet	Graphic Log	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION The Soil Description applies only to a location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type of Tests
	-			S-2	$ \begin{bmatrix} 25 \\ 50/6" \end{bmatrix} $					
130-									Total depth of boring: 31 feet No groundwater was encountered during drilling Borehole backfilled with soil cuttings and tamped	
125-	40 									
120-	45									
115-										
110-										
SAM							EeTe-			
S SF R RI B B T TL	DLIT SPO ING SAM ULK SAM JBE SAM	00N PLE IPLE PLE	G GRAB C CORE	SAMPLE	DS MI CN CF	DIRE DIRE MAXI CONS CORF	ESTS: CT SHEA MUM DEI COLIDATI	AR NSITY ON	SA SIEVE ANALYSIS SE SAND EQUIVALENT EI EXPANSION INDEX RV R VALUE	

. .

S	Other Tests				
OPERTIE	Density (pcf)		N45W		o. TS-1
ING PR	Moisture (%)		TREND:		 rench N
GINEER	Sample No.	51-6'			Log of T
и Ш	U.S.C.S.	C			
TS-1	GEOLOGIC UNIT	Quaternary Terrace Deposits (Qt) Tertiary Monterey Formation (Tm)	RFACE SLOPE: Flat	 	
: Name: Newport Beach City Hall Logged by: CDL : Number: 602184-001 Elevation: 185' Trench No. nent: Backhoe with 24-inch bucket Location: See Boring Location Map	LOGIC TUDES DATE: March 27, 2008 DESCRIPTION:	Quaternary Terrace Deposits (Qt) Q @0": CLAY with sand, dark brown, moist, stiff, fine grained sand, abundant roots D @0": CLAY with sand, dark brown, moist, stiff, fine grained sand, abundant roots D @0": CLAY with sand, dark brown, moist, stiff, fine grained sand, abundant roots D @0": CLAY with sand, dark brown, moist, fine grained sand, it is sand, trace amount of clay. T @12": SANDSTONE, mottled brown, grey and orange brown, moist, fine grained F F @12": SANDSTONE, mottled white and tan brown, damp, fine grained sand, noncohesive, some silt. T Total depth: 14.3 feet, no groundwater was encountered, the test pit was backfilled and the surface compacted by rubber tire equipment.	GRAPHIC PRESENTATION SCALE: 1" = 5' SUR		
Project Na Project Nu Equipmen	GEOLO				

တို့ Other Tests	Q		
Density (pcf)	Neow -	0. 13-2
Moisture (%)	TREND	
Z Z Sample No.	Bag-1 0		
U.S.C.S.	S C S		
TS-2	Quaternary Terrace Deposits (Qt) Tertiary Monterey Formation (Tm)	ZFACE SLOPE: Flat	
ct Name: Newport Beach City Hall Logged by: CDL CDL ct Number: 602184-001 Elevation: 185' Trench No. 185' Trench No. 185' Trench No. See Boring Location Map Collogic	Outaternary Terrace Deposits (Qt) Outaternary Terrace Deposits (Qt) OUtaternary Terrace Deposits (Qt) Outaternary Terrace Deposits (Qt) OO: Silty SAND with slit, light brown, moist, fine grained sand. O OO: Silty SAND with slit, light brown, moist, fine grained sand. O OO: Silty SAND with slit, light brown, moist, fine grained sand. O OO: Silty SANDSTONE, moist, fine grained sand. O OO: Silty SANDSTONE, mottled red brown and grey, moist, fine to medium grained F sand. O OO: Silty SANDSTONE, light yellow, moist, very dense, fine grained sand, massive, thin fractures well healed with brown clay. O OO: Solution of the surface compacted by rubber tire equipment. O	GRAPHIC PRESENTATION SCALE: 1" = 5' SUR SCALE: 1" = 5' SUR SCALE: 1" = 5' SUR	

	TIES	Other Tests		-		6
	ROPER	Density (pcf)		:N40M	 	
	RING PF	Moisture (%)		TREN		
	IGINEEF	Sample No.	Bag-1 @ 0'-2' Bag-2 @ 3'-5'			
i	EN EN	U.S.C.S.	SC CL			
TS-3		GEOLOGIC UNIT	Quaternary Terrace Deposits Tertiary Monterey Formation (Tm)	IRFACE SLOPE: Flat		
Logged by: CDL Elevation: 191' Trench No.	<u>ket</u> Location: See Boring Location Map	DESCRIPTION:	osits (Qt) noist, some fine grained sand, abundant roots within the own mottled with grey brown silty clay, moist, fine grained siltstone gravel. n, moist, fine grained sand. n, moist, fine grained sand, non-cohesive. brown, damp, fine grained sand, non-cohesive. brown, moist, fine grained sand. te and orange brown, fine grained sand, interbedd with groundwater was encountered, the test pit was backfilled groundwater was encountered, the test pit was backfilled groundwater irre equipment.	SCALE: 1" = 5' SL		
Newport Beach City Hall 602184-001	Backhoe with 24-inch buch	DATE: March 27, 2008	Quaternary Terrace Depo @0': CLAY, dark brown, m upper foot. @2.8': Sitty SAND, tan bro sand, some fine angular si @6': Clayey SAND, brown <u>Tertiary Monterey Forma</u> @8.5': SANDSTONE, tan @11': Sitty SANDSTONE, tan @11': Sitty SANDSTONE, tan @11': Sitty SANDSTONE, tan aftin beds of siltstone. Total depth: 13.5 feet, no and the surface compacted	PHIC PRESENTATION		
Project Name: Project Number:	Equipment:	GEOLOGIC ATTITUDES		GRA		

	ES	Other Tests				
	OPERTI	Density (pcf)		: N50W		o. TS-4
	ING PR	Moisture (%)		TREND		French N
	GINEER	Sample No.	51-6'			Log of 1
	Ш	U.S.C.S.	SM CL			
TS-4		GEOLOGIC UNIT	Quaternary Terrace Deposits Tertiary Monterey Formation (Tm)	RFACE SLOPE: Flat		
2184-001 Elevation: CDL Classification: 193' Trench No.	hoe with 24-inch bucket Location: See Boring Location Map	E: March 27, 2008 DESCRIPTION:	ernary Terrace Deposits (Qt) CLAY, dark brown, very moist, some fine grained sand, abundant roots within pper foot. S: Sitly SAND, light grey mottled with orange brown, moist, fine grained sand, zed. S: Tertiary Monterey Formation (Tm) S: Encounter well rounded cobbles. SANDSTONE, light tan brown, moist, very dense, fine grained sand, thin to interbeds of white sandstone. depth: 11.5 feet, no groundwater was encountered, the test pit was backfilled he surface compacted by rubber tire equipment.	PRESENTATION SCALE: 1" = 5' SUF		
Project Name: Ne Project Number: 6	Equipment: Ba	GEOLOGIC ATTITUDES DA	<u>à q à g g g g g g g g g g g g g g g g g </u>	GRAPHI		

	ES	Other Tests				
	OPERTI	Density (pcf)): N50E		lo. TS-5
	RING PR	Moisture (%)		TRENC		French N
	GINEEF	Sample No.	Bag-1 @ 5-6			Log of 7
	Ш	U.S.C.S.				
TS-5		GEOLOGIC UNIT	Tertiary Monterey Formation (Tm)	FACE SLOPE: 5H:1V	 	
h City Hall Logged by: CDL Elevation: 172' Trench No.	24-inch bucket Location: See Boring Location Map	27, 2008 DESCRIPTION:	erey Formation TM IDSTONE, tan white, dry, fine grained sand, abundant roots. IDSTONE, dark brown, damp, fine grained sand, trace roots, blocky uring. SANDSTONE, dark brown, damp, fine grained sand. SANDSTONE, dark brown, moist, medium grained sand, large ell rounded gravel. dded fine grained, white tan SANDSTONE and oxidized orange brown moist. ONE, tan white, damp, fine grained sand, friable, moderately 0.0 feet, no groundwater was encountered, the test pit was backfilled a connacted by rubber fire environment.	TATION SCALE: 1" = 5' SURI		
Newport Beac 602184-001	Backhoe with	DATE: March	Tertiary Mont @0': Silty SAN @0.4': CLAYS paleosol fractu @1.6': Clayey @2.5': Gravell angular and w @2.7': Interbe SILTSTONE, r @3.7': Encour @8': SANDST cemented. Total depth: 10	PHIC PRESEN		
Project Name: Project Number:	Equipment:	GEOLOGIC ATTITUDES	Contact: N35E 5W	GRA		-

	DPERTIES	Other Tests Density (pcf)	ts cf)	N50W		
	RING PR	Moisture (%)	%)	TREND		
	NGINEE	Sample No.	o.		 	
	للاً 	U.S.C.S.				
	TS-6	GEOLOGIC UNIT	GEOLOGIC UNIT Tertiary Monterey Formation (Tm)	RFACE SLOPE: Flat	 	
ged by: CDL	ation: 163' Trench No. ation: See Boring Location Map	DESCRIPTION:	DESCRIPTION: ne grained sand, abundant roots. n, dry, fine grained sand. y, fine grained sand, well cemented. o medium grained sand. was encountered, the test pit was backfilled ire equipment.	SCALE: 1" = 5' SUI		
Newport Beach City Hall Logg	ber: 602184-001 Elev Backhoe with 24-inch bucket Loca	C S DATE: March 27, 2008	 IDATE: March 27, 2008 Tertiary Monterey Formation TM @0': Silty SANDSTONE, brown, dry, fir @0': Silty SANDSTONE, brown, dry, fir @0.9': Sandy CLAYSTONE, dark brow, @0.9': Silty SANDSTONE, tan brown, dry @0.9': Silty SANDSTONE, tan brown, dry @0.1': Silty SANDSTONE, tan brown, dry @11': Silty SANDSTONE, moist, fine tc @11': Silty SANDSTONE, moist, fine tc @11': Silty SANDSTONE, moist, fine tc 	RAPHIC PRESENTATION	 	
Project Name	Project Numt Equipment:	GEOLOGI	ATTITUDE	U		

ſ		s	Other Tests				
		DERTIE	Density (pcf)		N55W		5. TS-7
		NG PRC	Moisture (%)		TREND:	 	 rench No
		GINEER	Sample No.	3ag-1 @ 0'-5' 5'-6' 5'-6'			Log of T
	i	Ž	U.S.C.S.			 	
			TIN		lat		
	TS-7		GEOLOGIC U	rtiary Monterey rmation (Tm)	ACE SLOPE: F		
	}			E C C C C C C C C C C C C C C C C C C C	SURF.	 	
	Trench No.	cation Map		lant roots. ome roots. ist, ist,		 	
200	161'	See Boring Lo	IPTION:	and, dry, abunc grained sand, s ined sand. e grained sand light brown, mc ed sand. d sand. tered, the test p	: 1" = 5'		
-	Logged by: Elevation:	Location:	DESCR	vn, fine grained s own, moist, fine gr own, dry, fine gra brown, moist, fin dark brown and , moist, fine grain moist, fine graine vell rounded. ater was encoun	SCALE		
	ort Beach City Hall 184-001	oe with 24-inch bucket	March 27, 2008	ry Monterey Formation The slitty SANDSTONE, light browsitty SANDSTONE, light browsitty SANDSTONE, light browsitty SANDSTONE, light brows and Clayey SANDSTONE, mottled almed sand. Slayey SANDSTONE, brown, layey SANDSTONE, brown, Encounter small boulders, we build be surface compacted by rubb	RESENTATION		
	Newpc	Backh	DATE:	Tertian (00: S (00: S (00: S (00: S (00: S (00: S (00: S (00: S (00: S (00: S) (00: S)	APHIC P	 	
	Project Name: Project Number	Equipment:	GEOLOGIC		GR4		

APPENDIX B

LABORATORY RESULTS FROM 2008

Boring No.	B-1	B-1	B-1	B-1	B-2	B-2	B-2	8-2
Sample No.	R-1	R-2	R-4	R-5	R-1	R-3	R-4	R-5
Depth (ft.)	5.0	10.0	30.0	40.0	5.0	15.0	25.0	35.0
Sample Type	Drive	Drive	Drive	Drive	Drive	Drive	Drive	Drive
Soil Identification	Brown lean clay (CL)	Olive brown sity sand (SM)	Olive brown silty sand (SM)	Olive brown silty sand (SM)	Brown silty clay (CL-ML)	Brown silty clay (CL-ML)	Light brown silty sand (SM)	Light brown silty sand (SM) / V. LOOSE
Pocket Penetrometer (tons/ft ²)	>4.5	2.75	1.75	4.00	>4.5	2.25	3.50	N/A
Weight Soil + Rings / Tube (g)	1020.78	818.82	1014.47	1077.99	1094.15	883.15	1027.90	1113.06
Weight of Rings / Tube (g)	222.00	222.00	266.40	266.40	266.40	266.40	266.40	266.40
Average Length (in.)	5.00	5.00	6.00	6.00	6.00	6.00	6.00	6.00
Average Diameter (in.)	2.416	2.416	2.416	2.416	2.416	2.416	2.416	2.416
Wet. Wt. of Soil + Cont. (g)	232.88	264.22	191.18	183.80	230.46	179.53	172.86	292.84
Dry Wt. of Soil + Cont. (g)	212.30	256.78	187.67	170.41	206.97	149.82	169.27	286.16
Weight of Container (g)	38.87	38.88	38.99	39.02	39.13	39.61	38.35	38.84
Container No.								
Wet Density	132.8	99.2	103.6	112.4	114.6	85.4	105.5	117.3
Moisture Content (%)	11.9	3.4	2.4	10.2	14.0	27.0	2.7	2.7
Dry Density (pcf)	118.7	95.9	101.2	102.0	100.6	67.3	102.6	114.2
Degree of Saturation (%)	76.2	12.2	9.6	42.2	55.9	48.4	11.5	15.3
					Project Name:	Newport Beach	City Hall	
Leighton	MOISI	IURE & DI	SNSITY of ASTM D 293	SOILS	Project No.: Client Name:	602184-001 LCI / Irvine		I
					Tested By:	S. Felter	Date:	04/08/08

M & D B-1 thru B-5.xls

Boring No.	B-2	B-3	B-3	B-3	B-3	B-4	B-4	B-4
Sample No.	R-6	R-1	R-2	R-3	R-5	R-1	R-2	R-3
Depth (ft.)	45.0	5.0	10.0	20.0	40.0	5.0	10.0	20.0
Sample Type	Drive	Drive	Drive	Drive	Drive	Drive	Drive	Drive
Soil Identification	Olive brown silty sand (SM)	Brown silty sand (SM)	Brown silty sand (SM)	Brownish gray silty sand (SM)	Light brown silty sand (SM)	Brown sandy silt s(ML)	Brown silty sand (SM)	Brown silty sand (SM)
Pocket Penetrometer (tons/ft ²)	1.50	>4.5	>4.5	>4.5	>4.5	>4.5	>4.5	>4.5
Weight Soil + Rings / Tube (g)	1013.17	901.39	1068.70	1084.20	1040.90	1192.67	1035.15	1017.84
Weight of Rings / Tube (g)	266.40	222.00	266.40	266.40	266.40	266.40	266.40	266.40
Average Length (in.)	6.00	5.00	6.00	6.00	6.00	6.00	6.00	6.00
Average Diameter (in.)	2.416	2.416	2.416	2.416	2.416	2.416	2.416	2.416
Wet. Wt. of Soil + Cont. (g)	282.70	164.65	242.09	215.74	206.60	193.57	202.33	230.69
Dry Wt. of Soil + Cont. (g)	272.15	156.29	231.54	187.35	191.09	183.78	193.39	220.14
Weight of Container (g)	38.81	38.64	38.38	38.86	38,38	39.68	38.50	39.07
Container No.								
Wet Density	103.4	112.9	111.1	113.3	107.3	128.3	106.5	104.1
Moisture Content (%)	4.5	7.1	5.5	19.1	10.2	6.8	5.8	5.8
Dry Density (pcf)	0.66	105.4	105.4	95.1	97.4	120.1	100.7	98.3
Degree of Saturation (%)	17.4	32.0	24.6	66.8	37.5	45.5	23.1	22.0
Leighton	LSIOM	rure & dr stmd 2216	ENSITY OF & ASTM D 293	2 SOILS	Project Name: Project No.: Client Name: Tested By:	Newport Beach 602184-001 LCI / Irvine S. Felter	n City Hall Date:	04/08/08

M & D B-1 thru B-5.xls

Boring No.	B-4	B-4	B-5	B-5	B-5	B-5		
Sample No.	R-4	R-5	R-1	R-2	R-3	R-4		
Depth (ft.)	30.0	40.0	5.0	10.0	15.0	25.0		
Sample Type	Drive	Drive	Drive	Drive	Drive	Drive		
Soil Identification	Brown silt (ML)	Brown silt with sand (ML)s	Brown silty clay (CL-ML)	Olive gray silty clay (CL-ML)	Brown silty cl ay (CL-ML)	Brown silt with sand (ML)s		
Pocket Penetrometer (tons/ft ²)	>4.5	>4.5	>4.5	>4.5	>4.5	>4.5		
Weight Soil + Rings / Tube (g)	878.71	1084.91	1046.83	889.59	1060.07	1130.15		
Weight of Rings / Tube (g)	222.00	266.40	222.00	222.00	266.40	266.40		r u transmis
Average Length (in.)	5.00	6.00	5.00	5.00	6.00	6.00	6	
Average Diameter (in.)	2.416	2.416	2.416	2.416	2.416	2.416		
Wet. Wt. of Soil + Cont. (g)	208.89	195.64	285.42	168.38	196.01	201.66		
Dry Wt. of Soil + Cont. (g)	178.01	163.08	261.54	134.73	156.48	185.72		
Weight of Container (g)	38.62	39.34	38.58	38.26	38.93	38.13		
Container No.								
Wet Density	109.1	113.4	137.1	110.9	109.9	119.6		
Moisture Content (%)	22.2	26.3	10.7	34.9	33.6	10.8		
Dry Density (pcf)	89.3	89.7	123.8	82.3	82.3	108.0	10	
Degree of Saturation (%)	67.5	80.9	80.0	89.8	86.5	52.0		
					Project Name:	Newport Beach City	/ Hall	
Leighton	MOIS	URE & DE	ENSITY OF	SOILS	Project No.: Client Name:	602184-001 I CT / Trvine		i
	ζ	5 0777 A 1416	N NOT N LOT X	20	Tested By:	S. Felter	Date:	04/08/08

M & D B-1 thru B-5.xls

EXPANSION INDEX of SOILS ASTM D 4829

Project Name:	Newport Beach City Hall	Tested By:	G. Berdy	Date:	04/10/08
Project No. :	602184-001	Checked By:	LF	Date:	05/19/09
Boring No.:	TS-7	Depth (ft.)	6-7		
Sample No. :	Bag-2				
Soil Identification:	Olive brown sandy lean clay s(CL)				

Dry Wt. of Soil + Cont. (g)	1000.00
Wt. of Container No. (g)	0.00
Dry Wt. of Soil (g)	1000.00
Weight Soil Retained on #4 Sieve	0.00
Percent Passing # 4	100.00

MOLDED SPECI	MEN	Before Test	After Test
Specimen Diameter	(in.)	4.01	4.01
Specimen Height	(in.)	1.0000	1.0280
Wt. Comp. Soil + Mold	(g)	587.10	432.30
Wt. of Mold	(g)	190.30	0.00
Specific Gravity (Assume	ed)	2.70	2.70
Container No.		0	0
Wet Wt. of Soil + Cont.	(g)	798.10	622.60
Dry Wt. of Soil + Cont.	(g)	725.50	551.00
Wt. of Container	(g)	0.00	190.30
Moisture Content	(%)	10.01	19.85
Wet Density	(pcf)	119.7	126.8
Dry Density	(pcf)	108.8	105.8
Void Ratio		0.549	0.593
Total Porosity		0.355	0.372
Pore Volume	(cc)	73.4	79.2
Degree of Saturation (%	b) [S meas]	49.2	90.4

SPECIMEN INUNDATION in distilled water for the period of 24 h or expansion rate < 0.0002 in./h

Date	Time	Pressure (psi)	Elapsed Time (min.)	Dial Readings (in.)
04/10/08	14:10	1.0	0	0.0725
04/10/08	14:20	1.0	10	0.0720
	ŀ	dd Distilled Water to the	Specimen	
04/10/08	14:25	1.0	5	0.0845
04/11/08	7:30	1.0	1030	0.1005
04/11/08	8:39	1.0	1099	0.1005

Leighton

MODIFIED PROCTOR COMPACTION TEST

ASTM D 1557

Project Name:	Newport Beach City Hall	Tested By :	G. Berdy	Date:	04/11/08
Project No.:	602184-001	Input By :	J. Ward	Date:	05/19/09
Boring No.:	TS-2	Depth (ft.)	9-10		
Sample No. :	Bag-2				
Soil Identification:	Olive yellow poorly-graded sand with silt	(SP-SM)			

Preparation Method:

Moist Dry

Mechanical Ram Manual Ram

Mold Volume (ft³)

Ram Weight = 10 lb.; Drop = 18 in.

Optimum Moisture Content (%)

TEST NO.		1	2	3	4	5	6
Wt. Compacted Soil +	- Mold (g)	3736.0	3794 .0	3861.0	3842.0		
Weight of Mold	(g)	1885.0	1885.0	1885.0	1885.0		
Net Weight of Soil	(g)	1851.0	1909.0	1976.0	1957.0		Statute & Second 1 in the order of the second second
Wet Weight of Soil +	Cont. (g)	353.00	354.60	374.20	416.50		
Dry Weight of Soil +	Cont. (g)	330.70	326.20	337.70	367.70		
Weight of Container	(g)	53.90	54.40	54.30	54.20		
Moisture Content	(%)	8.06	10.45	12.88	15.57		
Wet Density	(pcf)	122.5	126.4	130.8	129.6		
Dry Density	(pcf)	113.4	114.4	115.9	112.1		

116.0

0.03330

Maximum Dry Density (pcf)

130.0

PROCEDURE USED

X Procedure A

Soil Passing No. 4 (4.75 mm) Sieve Mold: 4 in. (101.6 mm) diameter Layers: 5 (Five) Blows per layer : 25 (twenty-five) May be used if +#4 is 20% or less

Procedure B

Soil Passing 3/8 in. (9.5 mm) Sieve Mold: 4 in. (101.6 mm) diameter Layers: 5 (Five) Blows per layer: 25 (twenty-five) Use if +#4 is >20% and +3/8 in. is 20% or less

Procedure C Soil Passing 3/4 in. (19.0 mm) Sieve Mold: 6 in. (152.4 mm) diameter Layers : 5 (Five) Blows per layer : 56 (fifty-six) Use if +3/8 in. is >20% and +3/4 in. is <30%

Particle-Size Distribution:

13.0

LABORATORY RESULTS FROM 2009

Boring No.	BA-1	BA-1	BA-1	BA-1	BA-1	BA-1	BA-1	NB-1
Sample No.	R-1	R-3	R-5	R-6	R-7	R-9	R-11	R-1
Depth (ft.)	5.0	15.0	25.0	30.0	35.0	45.0	55.0	5.0
Sample Type	Drive	Drive	Drive	Drive	Drive	Drive	Drive	Drive
Soil Identification	Brown silty sand (SM)	Orange brown silty sand (SM)	Grayish white silty sand (SM)	Grayish brown lean clay with sand & grayish white silty sand (CL)s & (SM)	Grayish white silty sand (SM)	Light brown silty sand (SM)	Brown silty sand (SM)	Orange brown silty sand (SM)
Pocket Penetrometer (tons/ft ²)	>4.50	>4.50	3.75	>4.50	2.00	3.75	1.25	>4.50
Weight Soil + Rings / Tube (g)	1228.25	1059.51	1092.99	1066.37	850.11	1067.83	875.15	1139.42
Weight of Rings / Tube (g)	266.40	266.40	266.40	266.40	222.00	266.40	222.00	266.40
Average Length (in.)	6.00	6.00	6.00	6.00	5.00	6.00	5.00	6.00
Average Diameter (in.)	2.416	2.416	2.416	2.416	2.416	2.416	2,416	2.416
Wet. Wt. of Soil + Cont. (g)	221.41	198.02	193,46	191.73	222.73	193.06	167.01	183.75
Dry Wt. of Soil + Cont. (g)	204.90	187.22	187.57	170.84	214.27	186.04	157.31	173.65
Weight of Container (g)	38.71	38.93	38.61	38.93	38.74	38.81	39.31	39.31
Container No.								
Wet Density	133.2	109.8	114.5	110.8	104.4	111.0	108.5	120.9
Moisture Content (%)	10	٢	4	16	Ŋ	Ŋ	8	ø
Dry Density (pcf)	121	102	110	96	100	106	100	112
Degree of Saturation (%)	68.6	30.4	20.1	56.1	18.8	21.8	32.6	40.7
					Project Name:	Newport Beach	i City Hall	
Lainhton	MOIS	TURE & DI	INSITY of	SOILS	Project No.:	602184-002		1
		ASTM D 2216 (٤ ASTM D 293	7	Client Name: Tested By:	LCI / Irvine S. Felter	Date:	03/25/09

Boring No.	NB-1	NB-1	NB-1	NB-1	NB-1	NB-1	NB-1	NB-2
Sample No.	R-2	R-3	R-4	R-5	R-6	R-7	R-8	R-1
Depth (ft.)	10.0	20.0	25.0	30.0	40.0	50.0	60.0	5.0
Sample Type	Drive	Drive	Drive	Drive	Drive	Drive	Drive	Drive
Soil Identification	Orange brown silty sand (SM)	Olive brown silty sand (SM)	Grayish white silty sand (SM)	Light brown silty sand (SM)	Orange brown silty sand (SM)	Brown silty sand (SM)	Brownish white (SM)g	Brown lean clay (CL)
Pocket Penetrometer (tons/ft ²)	>4.50	3.50	2.75	3.00	2.75	>4.50	>4.50	3.00
Weight Soil + Rings / Tube (g)	897.44	1043.55	1045.91	840.47	846.27	978.58	1053.97	900.08
Weight of Rings / Tube (g)	222.00	266.40	266.40	222.00	222.00	222.00	222.00	222.00
Average Length (in.)	5.00	6.00	6.00	5.00	5.00	5.00	5.00	5.00
Average Diameter (in.)	2.416	2.416	2.416	2.416	2.416	2.416	2.416	2.416
Wet. Wt. of Soil + Cont. (g)	297.07	175.01	172.69	254.83	256.80	314.07	339.00	264.22
Dry Wt. of Soil + Cont. (g)	277.13	168.14	165.16	242.50	242.92	274.69	304.65	234.91
Weight of Container (g)	38.93	39.11	38.61	38.81	38.74	39.02	39.72	38.86
Container No.								
Wet Density	112.3	107.6	108.0	102.8	103.8	125.7	138.3	112.7
Moisture Content (%)	ø	Ŋ	9	9	7	17	13	15
Dry Density (pcf)	104	102	102	97	97	108	122	98
Degree of Saturation (%)	36.0	22.1	24.6	22.1	25.0	79.9	92.8	56.1
					Project Name:	Newport Beach	City Hall	
l eighton	MOIST	URE & DI	INSITY of	SOILS	Project No.:	602184-002		
	A	0 0777 M MIS	293 U MICH X	,	Tested By:	S. Felter	Date:	03/25/09

Boring No.	NB-2	NB-2	NB-2	NB-2	NB-2	NB-2	NB-2	NB-3
Sample No.	R-2	R-3	R-4	R-6	R-7	R-8	R-9	R-1
Depth (ft.)	10.0	20.0	30.0	50.0	60,0	70.0	80.0	5.0
Sample Type	Drive	Drive	Drive	Drive	Drive	Drive	Drive	Drive
Soil Identification	Brown silty sand (SM)	Orange brown siłty sand (SM)	Grayish white silty sand (SM)	Olive brown silty clay (CL- ML)	Brown silty sand (SM)	Olive gray silty sand (SM)	Brown lean clay (CL)	Brown silty clay (CL-ML)
Pocket Penetrometer (tons/ft ²)	>4.50	>4.50	3.50	>4.50	2.75	0.75	>4.50	>4.50
Weight Soil + Rings / Tube (g)	1049.11	1084.32	861.18	1073.37	951.70	997.67	1142.24	1199.27
Weight of Rings / Tube (g)	266.40	266.40	222.00	266.40	222.00	222.00	266.40	266.40
Average Length (in.)	6.00	6.00	5.00	6.00	5.00	5.00	6.00	6.00
Average Diameter (in.)	2.416	2.416	2.416	2.416	2.416	2.416	2.416	2.416
Wet. Wt. of Soil + Cont. (g)	197.52	169.62	176.99	179.70	309.60	317.23	213.15	297.09
Dry Wt. of Soil + Cont. (g)	185.69	161.71	172.65	145.23	258.71	267.72	165.56	269.93
Weight of Container (g)	39,21	38.24	39.26	39.31	39.13	39.33	39.10	38.26
Container No.								
Wet Density	108.4	113.3	106.2	111.8	121.3	128.9	121.3	129.2
Moisture Content (%)	8	9	m	33	23	22	38	12
Dry Density (pcf)	100	106	103	84	98	106	88	116
Degree of Saturation (%)	32.0	29.7	13.8	88.0	87.9	0.66	111.3	69.2
					Project Name:	Newport Beach	City Hall	
I olahton	NOISI	URE & DE	INSITY of	SOILS	Project No.:	602184-002		
	A	STM D 2216 8	k ASTM D 293	7	Client Name:	LCI / Irvine		
					Tested By:	S. Felter	Date:	03/25/09

Boring No.	NB-3	NB-3	NB-3	NB-3	NB-3	NB-3	NB-3	NB-3
Sample No.	R-2	R-3	R-4	R-5	R-6	R-7	R-8	R-9
Depth (ft.)	10.0	20.0	30.0	40.0	50.0	60.0	70.0	80.0
Sample Type	Drive	Drive	Drive	Drive	Drive	Drive	Drive	Drive
Soil Identification	Light brown silty sand (SM)	Grayish brown silty clay (CL- ML)	Light gray silty sand (SM)	Grayish brown silty sand (SM)	Orange brown silty sand (SM)	Brown silty sand (SM)	Orange brown silty sand (SM)	Brown silty sand (SM)
Pocket Penetrometer (tons/ft ²)	2.50	>4.50	3.75	1.75	>4.50	>4.50	3.00	3.00
Weight Soil + Rings / Tube (g)	1015.76	1092.55	1043.80	1022.43	1080.05	1151.26	1195.21	1211.47
Weight of Rings / Tube (g)	266.40	266.40	266.40	266.40	266.40	266.40	266.40	266.40
Average Length (in.)	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
Average Diameter (in.)	2.416	2.416	2.416	2.416	2.416	2.416	2.416	2.416
Wet. Wt. of Soil + Cont. (g)	181.60	204.42	177.21	180.33	192.19	187.34	197.35	200.83
Dry Wt. of Soil + Cont. (g)	172.11	172.01	171.65	175.35	180.85	166.61	173.52	176.38
Weight of Container (g)	39.16	39.27	39.34	38.97	39.38	38.71	38,93	39.22
Container No.								
Wet Density	103.8	114.4	107.7	104.7	112.7	122.5	128.6	130.9
Moisture Content (%)	7	24	4	4	ø	16	18	18
Dry Density (pcf)	97	92	103	101	104	105	109	111
Degree of Saturation (%)	26.0	79.1	18.0	14.7	35.1	73.1	88.1	93.0
					Project Name:	Newport Beach	n City Hall	
	MOISI	IURE & DE	NSITY of	SOILS	Project No.:	602184-002		
	4	STM D 2216 8	ASTM D 293	7	Client Name:	LCI / Irvine		
					Tested By:	S. Felter	- Date:	03/25/09

Boring No.	NB-4	NB-4	NB-4	NB-4	NB-5	NB-5	NB-5	NB-5
Sample No.	R-1	R-2	R-3	R-4	R-1	R-2	R-3	R-4
Depth (ft.)	7.5	15.0	25.0	35.0	10.0	20.0	30.0	40.0
Sample Type	Drive	Drive	Drive	Drive	Drive	Drive	Drive	Drive
Soil Identification	Brown silty sand (SM)	Grayish brown silty sand (SM)	Light brown silty sand (SM)	Light brown silty sand (SM)	Brown silty sand (SM)	Brown silty sand (SM)	Brown silty sand (SM)	Brown silty sand (SM)
Pocket Penetrometer (tons/ft ²)	>4.50	4.00	4.25	2.25	>4.50	2.75	2.00	>4.50
Weight Soil + Rings / Tube (g)	1189.03	1203.97	1030.24	937.07	1189.31	934.55	1160.48	952.13
Weight of Rings / Tube (g)	266.40	266.40	222.00	222.00	266.40	222.00	266.40	222.00
Average Length (in.)	6.00	6.00	5.00	5.00	6.00	5.00	6.00	5.00
Average Diameter (in.)	2.416	2.416	2.416	2.416	2.416	2.416	2.416	2.416
Wet. Wt. of Soil + Cont. (g)	228.46	196.00	310.41	315.02	201.72	200.65	193.82	169.90
Dry Wt. of Soil + Cont. (g)	213.13	173.94	284.83	291.19	184.36	180.25	168.74	156.92
Weight of Container (g)	39,11	38.26	39.16	39.10	39.72	39.02	38.86	39.21
Container No.								
Wet Density	127.8	129.8	134.3	118.8	127.8	118.4	123.8	121.3
Moisture Content (%)	6	16	10	0	12	14	19	11
Dry Density (pcf)	117	112	122	109	114	103	104	109
Degree of Saturation (%)	54.6	86.2	72.9	46.2	67.9	62.0	83.5	54.9
					Project Name:	Newport Beach	i City Hall	
	MOIST	IURE & DE	INSITY of	SOILS	Project No.:	602184-002		
	4	STM D 2216 8	k ASTM D 293	7	Client Name:	LCI / Irvine		
					Tested By:	S. Felter	Date:	03/26/09

Boring No.	NB-5	NB-5	NB-6	NB-6	NB-6	NB-6	NB-6	NB-6
Sample No.	R-5	R-6	R-1	R-2	R-3	R-4	R-5	R-6
Depth (ft.)	50.0	60.0	5.0	10.0	20.0	30.0	40.0	50.0
Sample Type	Drive	Drive	Drive	Drive	Drive	Drive	Drive	Drive
Soil Identification	Brown silty sand (SM)	Brown silty sand'stone' (SM)	Brown lean clay (CL) with organic material	Olive gray lean clay'stone' (CL)	Olive gray lean clay'stone' (CL), disturbed	Olive gray lean day'stone' (CL)	Olive brown lean clay (CL)	Grayish brown lean clay (CL)
Pocket Penetrometer (tons/ft ²)	3.75	2.00	>4.50	>4.50	N/A	>4.50	>4.50	4.00
Weight Soil + Rings / Tube (g)	1159.21	1001.44	895.42	903.89	765.87	1027.62	1102.96	896.17
Weight of Rings / Tube (g)	266.40	222.00	222.00	222.00	177.60	266.40	266.40	222.00
Average Length (in.)	6.00	5.00	5.00	5.00	4.00	6.00	6.00	5.00
Average Diameter (in.)	2.416	2.416	2.416	2.416	2.416	2.416	2.416	2.416
Wet. Wt. of Soil + Cont. (g)	193.01	339.59	281.99	326.09	228.58	182.75	184.08	305.34
Dry Wt. of Soil + Cont. (g)	172.51	305.85	243.71	260.30	192.90	153.95	153.44	243.82
Weight of Container (g)	38.24	39.26	39.33	39.13	39.31	38.35	39.56	38.83
Container No.								
Wet Density	123.6	129.5	111.9	113.3	122.2	105.4	115.9	112.0
Moisture Content (%)	15	13	19	30	23	25	27	30
Dry Density (pcf)	107	115	94	87	66	84	91	86
Degree of Saturation (%)	72.2	73.3	64.2	86.4	89.6	67.5	85.8	84.8
					Project Name:	Newport Beach	n City Hall	
Loidhfon	MOIST	URE & DE	INSITY of	SOILS	Project No.:	602184-002		
	×	STM D 2216 8	k ASTM D 2937	•	Client Name:	LCI / Irvine		
					Tested By:	S. Felter	Date:	03/26/09

Boring No.	NB-6	NB-7	NB-7	NB-7	NB-7	NB-8	NB-8	NB-8
Sample No.	R-7	R-1	R-2	R-3	R-4	R-1	R-2	R-3
Depth (ft.)	60.0	5.0	10.0	20.0	30.0	5.0	10.0	20.0
Sample Type	Drive	Drive	Drive	Drive	Drive	Drive	Drive	Drive
Soil Identification	Dark grayish brown lean clay'stone' (CL)	Orange brown silty sand (SM)	Orange brown silty sand (SM)	Brown silty sand (SM)	Grayish brown silty sand (SM)	Brown silty sand (SM)	Brown silty sand (SM)	Yellowish brown silty sand (SM)
Pocket Penetrometer (tons/ft ²)	>4.50	>4.50	>4.50	3.50	>4.50	>4.50	>4.50	>4.50
Weight Soil + Rings / Tube (g)	1074.47	1203.14	1196.66	1056.60	1120.59	1148.89	1080.26	1055.99
Weight of Rings / Tube (g)	266.40	266.40	266.40	266.40	266.40	266.40	266.40	266.40
Average Length (in.)	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
Average Diameter (in.)	2.416	2.416	2.416	2.416	2.416	2.416	2.416	2.416
Wet. Wt. of Soil + Cont. (g)	202.53	215.82	202.29	181.98	199.65	195.68	176.34	195.75
Dry Wt. of Soil + Cont. (g)	170.97	202.54	190.13	176.16	188.65	184.66	167.70	184.17
Weight of Container (g)	39.22	38.60	38.73	39.13	39.09	38.69	38.87	38.84
Container No.								
Wet Density	111.9	129.7	128.8	109.4	118.3	122.2	112.7	109.4
Moisture Content (%)	24	8	ø	4	٢	ø	۲	8
Dry Density (pcf)	06	120	119	105	110	114	106	101
Degree of Saturation (%)	74.6	54.1	52.5	18.9	37.5	42.2	30.4	32.4
					Project Name:	Newport Beach	City Hall	
	MOIST	TURE & DE	JO ALISNE	SOILS	Project No.:	602184-002		
		VSTM D 2216 {	& ASTM D 293	2	Client Name: Tested By:	LCI / Irvine S. Felter	Date:	03/26/09

Boring No.	NB-8	NB-8	NB-8	NB-8	NB-8	NB-8	NB-8	
Sample No.	R-4	R-5	R-6	R-7	R-8	R-9	R-10	
Depth (ft.)	25.0	35.0	40.0	50.0	60.0	70.0	80.0	
Sample Type	Drive	Drive	Drive	Drive	Drive	Drive	Drive	
Soil Identification	White, gray and brown mottled lean clay (CL)	Grayish brown silty sand (SM)	Grayish brown silty sand (SM)	Top: Orange (SM); Bot: Brown (CL)	Orange brown silty sand (SM)	Grayish brown silty sand (SM)	Orange browr silty sand (SM)	
Pocket Penetrometer (tons/ft ²)	>4.50	>4.50	3.50	3.50	>4.50	2.75	2.00	
Weight Soil + Rings / Tube (g)	1086.37	1097.32	1034.21	1092.72	1145.60	986.34	1002.88	
Weight of Rings / Tube (g)	266.40	266.40	266.40	266.40	266.40	222.00	222.00	
Average Length (in.)	6.00	6.00	6.00	6.00	6.00	5.00	5.00	
Average Diameter (in.)	2.416	2.416	2.416	2.416	2.416	2.416	2.416	
Wet. Wt. of Soil + Cont. (g)	183.64	192.99	173.62	201.34	200.53	311.83	252.00	
Dry Wt. of Soil + Cont. (g)	148.11	174.00	156.83	177.32	171.33	264.96	213.54	
Weight of Container (g)	39.42	39.13	38.84	39.27	39.34	38.97	39.38	
Container No.								
Wet Density	113.6	115.1	106.3	114.4	121.8	127.0	129.8	
Moisture Content (%)	33	14	14	17	22	21	22	
Dry Density (pcf)	86	101	93	97	100	105	106	
Degree of Saturation (%)	91.0	56.7	47.4	64.4	86.5	93.0	101.8	
					Project Name:	Newport Beach	City Hall	
aidhfon	NOIS	IURE & DE	ENSITY of	SOILS	Project No.:	602184-002		
	•	STM D 2216	& ASTM D 293	7	Client Name: Tested By:	LCI / Irvine S. Felter	Date:	- 03/26/09

ATTERBERG LIMITS

ASTM D 4318

Project Name:	Newport Beach City Hall	Tested By:	A. Santos	Date:	03/24/09
Project No. :	602184-002	Input By:	J. Ward	Date:	03/31/09
Boring No.:	BA-1	Checked By:	J. Ward		
Sample No.:	Grab	Depth (ft.)	27.0		
Soil Identification:	Olive fat clay with sand (CH)s				

TEST	PLAST	TC LIMIT		LIÇ		
NO.	1	2	1	2	3	4
Number of Blows [N]			35	24	15	
Wet Wt. of Soil + Cont. (g)	9.81	9.45	18.90	21.34	21.19	
Dry Wt. of Soil + Cont. (g)	8.07	7.78	11.49	12.66	12.34	
Wt. of Container (g)	1.06	1.04	1.06	1.02	1.03	
Moisture Content (%) [Wn]	24.82	24.78	71.05	7 <u>4.5</u> 7	78.25	

			60
Liquid Limit	74		00
Plastic Limit	25		50
Plasticity Index	49	(IL	40
Classification	СН	dex (
		, n	30

PI at "A" - Line = 0.73(LL-20) 39.42 One - Point Liquid Limit Calculation LL = Wn(N/25)^{0.12}

PROCEDURES USED

Liquid Limit (LL)

Leighton

Unconfined Compressive Strength of Cohesive Soil ASTM D 2166

Newport Beach City Hall

EXPANSION INDEX of SOILS

ASTM D 4829

Project Name:	Newport Beach City Hall	Tested By:	G. Berdy	Date:	03/31/09
Project No. :	602184-002	Checked By:	J. Ward	Date:	04/01/09
Boring No.:	Combination of NB-1 (S-5, R-6), NB-	Depth (ft.)	35-45		_
Sample No. :	2 (R-5, S-6, S-8) & NB-3 (R-5, S-6)				
Soil Identification:	Yellow silty sand (SM)				_

Dry Wt. of Soil + Cont.	(g)	1000.00
Wt. of Container No.	(g)	0.00
Dry Wt. of Soil	(g)	1000.00
Weight Soil Retained on #	4 Sieve	0.00
Percent Passing # 4		100.00

MOLDED SPECIMEN	Before Test	After Test
Specimen Diameter (in.)	4.01	4.01
Specimen Height (in.)	1.0000	0.9995
Wt. Comp. Soil + Mold (g)	560.10	401.40
Wt. of Mold (g)	181.20	0.00
Specific Gravity (Assumed)	2.70	2.70
Container No.	0	0
Wet Wt. of Soil + Cont. (g)	769.00	582.60
Dry Wt. of Soil + Cont. (g)	689.70	521.00
Wt. of Container (g)	0.00	181.20
Moisture Content (%)	11.50	18.13
Wet Density (pcf) 114.3	121.1
Dry Density (pc) 102.5	102.5
Void Ratio	0.645	0.644
Total Porosity	0.392	0.392
Pore Volume (cc)	81.1	81.0
Degree of Saturation (%) [S	meas] 48.2	76.0

SPECIMEN INUNDATION in distilled water for the period of 24 h or expansion rate < 0.0002 in./h

Date	Time	Pressure (psi)	Elapsed Time (min.)	Dial Readings (in.)
03/31/09	9:53	1.0	0	0.1545
03/31/09	10:03	1.0	10	0.1540
	Ad	d Distilled Water to th	e Specimen	
03/31/09	10:15	1.0	12	0.1540
04/01/09	7:10	1.0	1267	0.1540
04/01/09	8:11	1.0	1328	0.1540

Expansion Index (EI meas) =	((Final Rdg - Initial Rdg) / Initial Thick.) x 1000	0
-----------------------------	---	---

R-VALUE TEST RESULTS DOT CA 301

PROJECT NAME: SAMPLE NUMBER: SAMPLE DESCRIPTION: Newport Beach City Hall BB-1

Brown silty sand (SM)

PROJECT NUMBER:	602184-002
SAMPLE LOCATION:	BA-1 @ 0-5'
TECHNICIAN:	S. Felter
DATE COMPLETED	3/25/2009

TEST SPECIMEN	а	b	c
MOISTURE AT COMPACTION %	10.9	11.0	11.2
HEIGHT OF SAMPLE, Inches	2.43	2.58	2.51
DRY DENSITY, pcf	120.5	119.7	119.8
COMPACTOR PRESSURE, psi	275	250	175
EXUDATION PRESSURE, psi	356	307	264
EXPANSION, Inches x 10exp-4	26	25	17
STABILITY Ph 2,000 lbs (160 psi)	35	38	42
TURNS DISPLACEMENT	4.26	4.06	4.11
R-VALUE UNCORRECTED	68	66	63
R-VALUE CORRECTED	67	66	63

	a	<u> </u>	с
GRAVEL EQUIVALENT FACTOR	1.0	1.0	1.0
TRAFFIC INDEX	5.0	5.0	5.0
STABILOMETER THICKNESS, ft.	0.53	0.54	0.59
EXPANSION PRESSURE THICKNESS, ft.	0.87	0.83	0.57

EXPANSION PRESSURE CHART

SOIL RESISTIVITY TEST

DOT CA TEST 532 / 643

Project Name:	Newport Beach City Hall	Tested By :	V. Juliano	Date:	03/31/09
Project No. :	602184-002	Data Input By:	J. Ward	Date:	04/01/09
Boring No.:	Combination of NB-1 (S-5, R-6), NB-2 (R-5, S-6, S-8) & NB-3 (R-	Depth (ft.) :	35-45		
Sample No. :	5, S-6)				
Soil Identification	: Yellow silty sand (SM)				

Specimen No.	Water Added (ml) (Wa)	Adjusted Moisture Content (MC)	Resistance Reading (ohm)	Soil Resistivity (ohm-cm)
1	200	19.67	140	944
2	300	27.65	120	810
3	400	35.63	130	877
4				
5				

Moisture Content (%) (MCi)	3.72	
Wet Wt. of Soil + Cont. (g)	213.30	
Dry Wt. of Soil + Cont. (g)	208.30	
Wt. of Container (g)	73.80	
Container No.		
Initial Soil Wt. (g) (Wt)	1300.00	
Box Constant	6.746	
MC =(((1+Mci/100)x(Wa/Wt+1))-1)x100		

Min. Resistivity Moisture Conte		Sulfate Content	Chloride Content	So	il pH
(ohm-cm)	(%)	(ppm)	(ppm)	pН	Temp. (°C)
DOT CA Te	est 532 / 643	DOT CA Test 417 Part II	DOT CA Test 422	DOT CA T	est 532 / 643
808	28.4	47	457	7.75	19.9

TESTS for SULFATE CONTENT CHLORIDE CONTENT and pH of SOILS

Project Name: Newport Beach City Hall		Tested By :	V. Juliano	Date:	03/30/09
Project No. : 602184-002		Data Input By:	J. Ward	Date:	04/01/09
	Combination of				
Boring No.		NB-1 (5-5, K-0), S-8) & NB-3 (R-			
Sample No.	5, S-6)				
Sample Depth (ft)	35-45				7
Soil Identification:	Yellow silty sand (SM)				
Wet Weight of Soil + Container (g)	213.30				
Dry Weight of Soil + Container (g)	208.30				
Weight of Container (g)	73.80				
Moisture Content (%)	3.72				
Weight of Soaked Soil (g)	100.40				

SULFATE CONTENT, DOT California Test 417, Part II

Beaker No.	6	
Crucible No.	15	
Furnace Temperature (°C)	840	
Time In / Time Out	7:20 / 8:05	
Duration of Combustion (min)	45	
Wt. of Crucible + Residue (g)	20.3158	
Wt. of Crucible (g)	20.3147	
Wt. of Residue (g) (A)	0.0011	
PPM of Sulfate (A) × 41150	45.27	
PPM of Sulfate, Dry Weight Basis	47	

CHLORIDE CONTENT, DOT California Test 422

ml of Chloride Soln. For Titration (B)	30		
ml of AgNO3 Soln. Used in Titration (C)	4.6		
PPM of Chloride (C -0.2) * 100 * 30 / B	440		
PPM of Chloride, Dry Wt. Basis	<u>45</u> 7		

pH TEST, DOT California Test 532/643

pH Value	7.75		
Temperature °C	19.9		

APPENDIX C

WALLACE LABORATORIES 365 Coral Circle El Segundo, CA 90245 phone (310) 615-0116 fax (310) 640-6863

March 19, 2009

Vivian Cheng, <u>vcheng@leightongroup.com</u> Leighton Consulting, Inc. 17781 Cowan Irvine, CA 92614

RE: Newport Beach City Hall & Park, Project No. 602184-002

Dear Vivian,

Attached are the soil reports for 78 soil sample for the Newport Beach City Hall & Park, Project No. 602184-002 containing agronomic soil suitability data. The soils were evaluated for:

- Acidity/alkalinity and pH values
- Salinity including soluble concentrations of: calcium, magnesium, sodium, potassium, chloride, nitrate, phosphorus, sulfate and boron
- Sodicity including total available sodium and sodium adsorption ratio
- Fertility:

nitrogen, phosphorus, potassium, iron, manganese, zinc, copper, boron, calcium, magnesium, sulfur, molybdenum and nickel

- Non-essential trace metals include: aluminum, arsenic, barium, cadmium, chromium, cobalt, lead, lithium, mercury, selenium, silver, sodium, strontium, tin, titanium, vanadium,
- Soil organic matter determined by total organic carbon and total nitrogen
- Soil texture including the concentrations of gravel, sand, silt and clay
- Percent soil moisture

The more select soils are those which have salinity below 3.0 millimho/cm, which are not gravelly, which are non sand and not clay. The target soil texture is sandy loam but the following list includes loamy sands, loam and sandy clay loam. The average pH is 7.65. The average salinity is 0.84 millimho/cm. The average soil organic matter is 0.63%. The average concentration of chloride is 125 parts per million in the saturation extract. The average concentration of sodium is 369 parts per million. The average concentration of magnesium is 520 parts per million. On average phosphorus, nitrogen, potassium and sulfur are low. The micronutrients are sufficient.

Leighton Consulting, Inc, March 19, 2009, page 2 Newport Beach City Hall & Park, Project No. 602184-002

Approved select soils

Ba-1 0.5'	NB-1 18"	NB-4 22.5'
Ba-1 1.5'	NB-1 3'	NB-4 30'
Ba-1 3'	NB-1 30'	NB-4 37.5'
HA-1 6"	NB-2 6"	NB-6 37.5'
HA-1 18"	NB-2 18"	NB-7 0.5'
HA-1 36"	NB-3 6"	NB-7 1.5'
HA-2 6"	NB-4 0.5'	NB-7 3'
HA-2 18"	NB-4 1.5'	NB-8 0.5'
HA-2 36"	NB-4 3'	NB-8 1.5'
HA-3 36"	NB-4 7.5'	NB-8 3'
NB-1 6"	NB-4 15'	

The following soils have unsuitable properties including soil textures which are sand or gravelly, have salinity in excess of 3.0 millimho/cm. The average pH is 7.25. The average salinity is 4.27 millimho/cm. The average soil organic matter is 0.40%. The average concentration of chloride is 1,258 parts per million in the saturation extract. The average concentration of sodium is 838 parts per million. The average concentration of magnesium is 849 parts per million. On average phosphorus, nitrogen, and potassium are low. The micronutrients are sufficient.

Unsuitable soils

Ba-1 7.5'	HA-5 36"	NB-3 3'	NB-7 7.5'
Ba-1 15'	NB-1 7.5'	NB-3 7.5'	NB-7 15'
Ba-1 22.5'	NB-1 15'	NB-3 15'	NB-7 22.5'
Ba-1 30'	NB-1 22.5'	NB-3 22.5'	NB-7 30'
Ba-1 37.5'	NB-1 37.5'	NB-3 37.5'	NB-7 37.5'
HA-3 6"	NB-2 3'	NB-6 0.5'	NB-8 7.5'
HA-3 18"	NB-2 7.5'	NB-6 1.5'	NB-8 15'
HA-4 6"	NB-2 15'	NB-6 3'	NB-8 22.5'
HA-4 18"	NB-2 22.5'	NB-6 7.5'	NB-8 30'
HA-4 36"	NB-2 30'	NB-6 15'	NB-8 37.5'
HA-5 6"	NB-2 37.5'	NB-6 22.5'	
HA-5 18"	NB-3 18"	NB-6 30'	

It is recommended that the select soils be harvested for finish grade of landscape planter soils at least 1 foot deep and hopefully at least 2 feet deep.

description	target	average of all	maximum of all	minimum of all	average of select	maximum of select	minimum of select	average of non-select	maximum of non- select	minimum on non- select
pH	6.5-7.9	7.41	8.76	5.78	7.65	8.76	6.50	7.25	8.60	5.78
salinity	0.5-3	2.87	9.78	0.28	0.84	2.71	0.28	4.27	9.78	0.48
organic matter	3% - 5%	0.49%	2.53%	0.01%	0.63%	1.88%	0.07%	0.40%	2.53%	0.01%
sodium	<200	646	1,730	41	369	1,180	41	838	1,730	256
SAR	<4	9.5	20.2	1.6	6.6	18.6	1.6	11.6	20.2	3.0
chloride	<150	793	2,754	2	125	843	5	1,258	2,754	2
nitrate	10-30	9	79	1	4	17	1	12	79	2
phosphorus	8-20	3.8	14.3	0.4	2.8	10.4	0.6	4.5	14.3	0.4
potassium	60-180	56	241	11	58	241	21	55	230	11
iron	4-15	5.23	39.06	0.46	8.04	39.06	1.05	3.27	15.90	0.46
manganese	0.6-3	1.28	10.54	0.05	2.12	10.54	0.16	0.69	5.45	0.05
zinc	1-3	0.88	5.91	0.02	0.97	3.81	0.03	0.82	5.91	0.02
copper	0.2-3	1.42	12.21	0.10	1.45	9.54	0.10	1.39	12.21	0.10
boron	0.2-0.5	0.15	0.56	0.01	0.14	0.53	0.02	0.16	0.56	0.01
magnesium	25-100	714	1,965	66	520	1,150	66	849	1,965	202
sulfur	25-100	46	243	3	21	1 87	3	64	243	4

Summary of soil properties

Recommendations

These recommendations are preliminary and need to be verified prior to soil preparation after the soils are in place. Stockpiled soils can also be analyzed to verify their suitability. Also verify that amended soils are suitable prior to planting.

CLEANUP Clean up construction debris, trash and masonry material. Remove soil high in gravel, i.e. where gravel is over 20% such as in planters in parking lot cutouts and near the footings of walls.

RIPPING Haul roads, access roads and staging areas from storage and parking need to be deeply ripped. Other areas where the soil is not readily rototillable also need to be ripped. Cross-rip the soil on 12-inch centers to a minimum depth of 24 inches if more highly compacted. Final soil compaction should not exceed 80%. In areas of existing trees or shrubs, care is needed to avoid damaging existing roots.

TILLAGE After approximate finished grade has been established, rototill the soil as deep as practical but at least 6 inches. Reduce soil clods to a maximum diameter of 1 inch in the top 6 inches. Do not till muddy soils, they are not friable. Optimum moisture content is partially damp. The moisture content should not be so great that excessive compaction will occur, nor so dry that clods will not break readily. Remove rocks, gravel,

Soil Analyses Plant Analyses Water Analyses

Leighton Consulting, Inc, March 19, 2009, page 4 Newport Beach City Hall & Park, Project No. 602184-002

debris and clods larger than 1 inch in diameter from the top 6 inches. Lower the gravel content to a maximum of 20% if high.

APPLICATION OF AMENDMENTS AND FERTILIZERS.

Uniformly broadcast the following materials. The rates are per 1,000 square feet:

Ammonium sulfate (21-0-0) – 5 pounds Potassium sulfate (0-0-50) – 8 pounds Triple superphosphate (0-45-0) – 4 pounds Gypsum – 50 pounds Organic amendment – 3 cubic yards, sufficient for 3% to 6% soil organic matter

Homogeneously incorporate the above materials into the soil to a depth of six inches. The final soil organic matter should be in the range of 3% to 6%. The soil organic matter needs to be stable in order to avoid excessive decomposition. Fine rake the soils after soil preparation and remove gravel larger than 3/8 inches in diameter from the top several inches.

After the preparation of the soil, test the quality of the amended soil for suitability prior to seeding and planting.

PRELEACHING Leach the soil prior to planting if high in salinity and/or sodicity. Lower soil salinity where greater than 3 millimho/cm measured in the saturation extract. Lower sodium to less than 300 parts per million and reduce the sodium adsorption ratio to less than 4. Additional gypsum will be needed during maintenance. Additional soil tests will be desirable to show how well the sodium, magnesium and alkalinity are being leached.

TRANSPLANTING Prepare planting pits normally twice as wide as the rootballs. The walls and bottom of the planting pits should not have compacted soil except under the rootball. If necessary, loosen glazed soil by scarifying the soil surface.

AUGERED HOLE For boxed trees 24 inches and larger, auger a hole in a corner of the planting pit at 12 inches in diameter and extending at least six feet deep from the base of the planting pit if beneficial to increase the rate of water percolation.

Leighton Consulting, Inc, March 19, 2009, page 5 Newport Beach City Hall & Park, Project No. 602184-002

BACKFILL MIX Blend the following materials into clean excavated soil or leached soil. Remove debris, rocks and foreign material. Soil clods should not exceed 1 inch in diameter. Remove rocks, gravel, debris and clods larger than 1 inch in diameter. Excessive gravel should not be present. The general maximum is 20%. Rates are per cubic yard:

Ammonium sulfate (21-0-0) – 1/4 pound Potassium sulfate (0-0-50) – 1/3 pound Triple superphosphate (0-45-0) – 1/4 pound Gypsum – 2 pounds Organic amendment – 15% by volume, sufficient for 3% to 6% soil organic matter

Backfill the transplant with the prepared soil and augered hole if used. The root flare needs to be slightly above grade. If a basin is used, it should be used temporarily. Standing water at the base of the trunk is undesirable. Fill augered holes if used with amended soil.

PLANTERS Rip the base soil in the planters before filling the planters to avoid a sharp soil interface.

ORGANIC AMENDMENT

- 1. Humus material shall have an ash content of no less than 6% and no more than 20%.
- 2. The pH of the material shall be between 6 and 7.5.
- 3. The salt content shall be less than 10 millimho/cm @ 25° C. (ECe less than 10) on a saturated paste extract.
- 4. Boron content of the saturated extract shall be less than 1.0 parts per million.
- 5. Silicon content (acid-insoluble ash) shall be less than 50%.
- 6. Calcium carbonate shall not be present if to be applied on alkaline soils.
- 7. Types of acceptable products are composts, manures, mushroom composts, straw, alfalfa, peat mosses etc. low in salts, low in heavy metals, free from weed seeds, free of pathogens and other deleterious materials.
- 8. Composted wood products are conditionally acceptable [stable humus must be present]. Wood based products are not acceptable which are based on red wood or cedar.
- 9. Sludge-based materials are not acceptable.
- 10. Carbon:nitrogen ratio is less than 25:1.
- 11. The compost shall be aerobic without malodorous presence of decomposition products.
- 12. The maximum particle size shall be 0.5 inch, 80% or more shall pass a No. 4 screen.

Leighton Consulting, Inc, March 19, 2009, page 6 Newport Beach City Hall & Park, Project No. 602184-002

Maximum total permissible pollutant concentrations in amendment in parts per million on a dry weight basis:

arsenic	20	copper	150	selenium	30
cadmium	15	lead	100	silver	10
chromium	100	mercury	10	vanadium	200
cobalt	50	molybdenum	20	zinc	200
		nickel	100		

Higher amounts of salinity or boron may be present if the soils are to be preleached to reduce the excess or if the plant species will tolerate the salinity and/or boron.

Sincerely,

en ph h allace Garn A. Wallace, Ph. D

GAW:n

JSC Carel Crefe Exequand, C. NSD is a constrained on the	WALLACE LABS	SOILS REPORT	Print Date	Mar. 18, 2009	Receive Date	3-12-09					
El Segundo CA 90245 Noval Charg. Legidor Committing Tr. 100 01-5010 Legidor 1000000000000000000000000000000000000	365 Coral Circle	Location	Newport Beach Ci	ity Hall & Park, P	roject No. 602184-0	002					
(10) $f = 50116$ cosis array control cosis array cosis cosis carray bins Sample Divate 0.770° 0.9770° 0.9771° <td>El Segundo, CA 90245</td> <td>Requester</td> <td>Vivian Cheng, Lei</td> <td>gliton Consulting</td> <td>Inc.</td> <td></td> <td></td> <td></td> <td></td> <td></td>	El Segundo, CA 90245	Requester	Vivian Cheng, Lei	gliton Consulting	Inc.						
arrendule - myly determined by the problem of	(310) 615-0116	graphic interpretation: * very low.	** low. *** moderate	6							
Jamma and Larger claim of Larger clarger claim of Larger claim of Larger claim of Large	ammonium bicarbonate/		**** high *****	une hich							
Integration of dam Image instruction Bits - 1.0 * Bits - 1.5 * Bi	extractable - mg/kg soil	Sample ID Number	09-77-09	very mgn	09-77-10		09-77-11		09-77-12		
now metaline high temmetan paplic	Interpretation of data	Sample 15 Humber	Ba-1 0.5		Ba-1 1.5		Ba-1 3		Ba-1 7.5'		
0.7 3.5 over 15 pipespirors 14.4 over 15 pipespirors 2.24 5.2 3.3 - 0.4 4.10 over 10 iran 8.7 11.18 - 5.02 - 4.4 - 6.02 - 6.01 1.13 5.02 - 0.63 -	low medium high	elements		graphic	20110	graphic		graphic		graphic	
	0 = 7 - 8 = 15 over 15	nhosphorus	8.41	***	2.24	•	2.51	•	2.33	*	
0 - 4 - 10 vert 0 inam in 27 ··· 0.1 11.11 ··· 0.30 ··· 0.83 ··· 0.34 ··· 0.83 ··· 0.84 ··· 0.85 ··· 0.85 ··· 0.84 ··· 0.84 ··· 0.85 ··· 0.84 ··· 0.85 ··· 0.84 ··· 0.85	0-60 60 -120 121-180	potassium	121.85	****	47.74	**	50.29	••	22.75	•	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0-4 4-10 over 10	iron	8.73	***	11.18	****	5.36	***	0.89	•	
0 - 1 - 1.5 over 1.5 aite 3.81 \cdots 0.52 \cdots 0.85 <td>0-0.5 0.6-1 over 1</td> <td>manganese</td> <td>2.15</td> <td>****</td> <td>0.92</td> <td>•••</td> <td>0.64</td> <td>•••</td> <td>0.05</td> <td>•</td>	0-0.5 0.6-1 over 1	manganese	2.15	****	0.92	•••	0.64	•••	0.05	•	
0.4.2 0.0.5 over 0.5 copper 0.6.2 0.2 0.5 over 0.5 0.2 0.5 0.5 0.2 0.5 0.2 0.	0 - 1 1 - 1.5 over 1.5	zine	3.81	****	0.58	**	1.68	****	n d	•	
0.4.2.0.2.0.5 over 1 brown magnetion default in the set of the se	0-0.2 0.3-0.5 over 0.5	copper	1.16	••••	0.73	••••	0.89	••••	0.14	•	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0-0.2 0.2-0.5 over 1	boron	n d	•	0.11	••	0.14	••	0.09	•	
irreds to more than 2 or 3 magnetium 66.3 •••• 390.0 •••• 390.0 •••• 390.0 •••• 390.0 •••• 390.0 •••• 390.0 •••• 390.0 •••• 390.0 •••• 390.0 •••• 390.0 •••• 390.0 •••• 390.0 •••• 390.0 •••• 390.0 •••• 390.0 •••• 390.0 •••• 390.0 •••• 390.0 •0.00 ••• 300.0 0.00 •••• 300.0 0.00 •••• 300.0 0.00 ••••	ratio of calcium to magnesium	calcium	448.40	****	375.70	•••	389.98	•••	437.71	••••	
abadd be less than potasium softim 40.83 • 38.12 •••• 43.13 •••• 53.00 •••• 53.00 •••• 53.00 •••• 53.00 •••• 53.00 •••• 53.00 ••• 53.00 ••• 53.00 ••• 53.00 ••• 50.00 •••• 50.00 •••• 50.00 •••• 50.00 •••• 50.00 ••••• 50.00 ••••• 50.00 ••••• 50.00 •••••• 50.00	needs to be more than 2 or 3	magnesium	66.31	***	590.91	•••••	397.30	****	548.02		
Nittir 0.61 0.249 0 2.3.0 0.7.0 modyldennn 0.22 - 0.5 0.5 0.05 The downer mers witck aluminum 0.24 0.55 0.55 0.66 The downer mers witck aluminum 0.1 0.55 0.65 0.66 The downer mers witck aluminum 0.1 0.05 0.03 0.03 0.02 - mapeds upen hyf cadminum 0.01 0.03 0.0	should be less than potassium	sodium	40.83	•	583.12	••••	451.51		599.90		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		molybdenum	6.61		32.49	•	25.30	•	0.00	•••	
The following taxe attrainst array to tool array t	1	nickel	0.02	•	0.55	•	0.35	•	0.06	•	
and the sector array ar	The following trace	aluminum	0.24 n.d	•	0.55 n.d	•	n.d	•	n d	•	
The degree of locicity Dartim 0.77 0.48 0.54 0.17 isopends upon the pi of cationium 0.05 nd 0.09 0.00 0.00 ine sell, soil lecture, chromium 0.05 nd 0.03 0.01 nd 0.02 oppede matrix, and the colait 0.03 0.03 0.03 0.04 0.02	elements may be toxic	arsenic	0.11	•	0.17	•	0.13	•	0.02	•	
sepents upon the pir of cadmium 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.01	The degree of toxicity	barium	0.77		0.48	•	0.54	•	0.17	•	
inic solit solit extron, or pather matrix and the cohalit concentrations of the lead in concentrations of the lead in the interactions. Introduced advancement is a lithium in and 0.03 · 0.03 · 0.03 · 0.04 · 0.03 · 0.04 · 0.03 · 0.04 · 0.04 · 0.05 · 0.021 · 0.22 · 0.25 · 0.21 · 0.25 ·	depends upon the pH of	cadmium	0.11	•	0.09	•	0.09	•	0.02	•	
organic matter, and the concentrations of the individual elements as will as 0. their interactions. 0.03 • 0.03 • 0.04 • vall as 0. their interactions. mercury n.d 0.22 • 0.20 • 0.21 • 0.22 • 0.20 • 0.21 • 0.22 • 0.21 • 0.22 • 0.21 • 0.22 • 0.21 • 0.23 • 0.23 • 0.23 • 0.23 • 0.23 • 0.23 • 0.23 • 0.23 • 0.23 • 0.23 • 0.4 • n.d • n.d • n.d • n.d • n.d • n.d • 0.23 • 0.23 • 0.24 • 0.24 • 0.45 1.1 0.1 0.1 1.1 0.1 1.1 0.1 1.1 0.1 1.1 1.1 1.1 1.1 1.1 1.1 <td>the soil, soil texture,</td> <td>chromium</td> <td>0.05</td> <td>•</td> <td>nd</td> <td>•</td> <td>0.01</td> <td>•</td> <td>n d</td> <td>•</td>	the soil, soil texture,	chromium	0.05	•	nd	•	0.01	•	n d	•	
concentrations of the individual elements as ithium 0.77 · 0.76 · 0.63 · 0.19 · individual elements as ithium nd ·	organic matter, and the	cobalt	0.03	•	0.03	•	0.03	•	0.04	•	
individual elements as iitiium 0.22 · 0.20 · 0.21 · 0.26 · well as to findly interactions. selentium n.d ·	concentrations of the	lead	0.77	•	0.76	•	0.63	•	0.19	•	
well as to field interactions, intercentry, ind * nd * <t< td=""><td>individual elements as</td><td>lithium</td><td>0.22</td><td>•</td><td>0.20</td><td>•</td><td>0.21</td><td>•</td><td>0.26</td><td>•</td></t<>	individual elements as	lithium	0.22	•	0.20	•	0.21	•	0.26	•	
n d n d <td>well as to their interactions.</td> <td>mercury</td> <td>n d</td> <td>•</td> <td>nd</td> <td>•</td> <td>nd</td> <td>•</td> <td>n d</td> <td>•</td>	well as to their interactions.	mercury	n d	•	nd	•	nd	•	n d	•	
In e proprintin depends upon soil organic matter and clay content- for clay and loans soils: under 5.2 is too acidie 		selenium	nd	•	nd	•	nd	:	0.07		
upon so or granc strontium 2.38 · 3.03 · indiana n.d.i	The pH optimum depends	silver	n d		n d		n d 3.05		1 U 4 8 I	•	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	upon soil organic	strontium	2.38	:	3.08 n.d		5.05	•	4.01 nd	•	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	for clay and loam soils:	vanadium	0.21	•	0.26	•	0.28	•	0.46	•	
6.5 to 7 is liteal 7.53 **** 6.99 *** 7.30 *** 7.6 *** Over 9 is too alkaline PH value 7.53 **** 6.99 *** 7.30 *** 7.26 *** The ECe is a measure of the coll satinity: millieq/1 millieq/1 <th colsp<="" td=""><td>under 5.2 is too acidie</td><td>vanacium</td><td>0.21</td><td></td><td>0.20</td><td></td><td>0.20</td><td></td><td></td><td></td></th>	<td>under 5.2 is too acidie</td> <td>vanacium</td> <td>0.21</td> <td></td> <td>0.20</td> <td></td> <td>0.20</td> <td></td> <td></td> <td></td>	under 5.2 is too acidie	vanacium	0.21		0.20		0.20			
over 9 is to alkaline pil value 7.3 *** 6.99 *** 7.30 *** 7.26 *** The ECc is a measure of the soil salinity: mbo/cm) mbo/cm) millieq/1 millieq/1<	6.5 to 7 is ideal	Saturation Extract	1								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	over 9 is too alkaline	DH value	7.53		6.99	•••	7.30	•••	7.26	•••	
Interstorm Indication Indication </td <td>The FCe is a measure of</td> <td>ECe (milli-</td> <td>0.82</td> <td>•••</td> <td>1.66</td> <td>•••</td> <td>2.24</td> <td>••••</td> <td>5.24</td> <td></td>	The FCe is a measure of	ECe (milli-	0.82	•••	1.66	•••	2.24	••••	5.24		
1-2 affects a few plants calcium 32.9 1.6 24.1 1.2 29.6 1.5 50.0 2.5 2-4 affects some plants, sodium 15.3 1.3 15.5 1.3 21.2 1.8 54.9 4.5 potassium 75.9 3.3 261.0 11.3 349.4 15.2 831.9 362.0 potassium 11.7 0.3 2.2 0.1 2.6 0.1 2.3 0.1 cation sum 6.5 13.9 18.5 18.5 433.3 problems over 150 ppm chloride 75 2.1 321 9.0 442 12.4 1.4 37.8 nitrate as N 12 0.9 7 0.5 9 0.6 12 0.9 toxic over 800 sulfate as S 18.8 1.2 42.0 2.6 57.1 3.6 134.0 47.0 toxic over 1 for many plants beron as B 0.09 • 0.20 • 0.22 • 0.18 • • stiggysum requirement-lbs/1.000 square feet 7 10.2	the soil salinity:	mho/cm)	0.02	millieg/l		millieg/l		millieq/l		millieq/l	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1-2 affects a few plants	calcium	32.9	1.6	24.1	1.2	29.6	1.5	50.0	2.5	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2-4 affects some plants,	magnesium	15.3	1.3	15.5	1.3	21.2	1.8	54.9	4.5	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	> 4 affects many plants.	sodium	75.9	3.3	261.0	11.3	349.4	15.2	831.9	36.2	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		potassium	11.7	0.3	2.2	0.1	2.6	0.1	2.3	0.1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		cation sum		6.5		13.9		18.5		43.3	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	problems over 150 ppm	chloride	75	2.1	321	9.0	442	12.4	1,341	37.8	
phosphorus as P 0.8 0.0 0.1 0.0 0.0 0.0 0.3 0.0 toxic over 800 sulfate as S 18.8 1.2 42.0 2.6 57.1 3.6 134.0 8.4 anion sum 4.2 12.2 2.6 57.1 16.6 47.0 toxic over 1 for many plants boron as B 0.09 • 0.20 •• 0.22 •• 0.18 • increasing problems start at 6 SAR 2.7 •• 10.2 •• 0.22 •• 0.18 • infiltration rate inches/hour fair/slow sandy clay loam gravel > 2 mm sandy clay loam <td></td> <td>nitrate as N</td> <td>12</td> <td>0.9</td> <td>7</td> <td>0.5</td> <td>9</td> <td>0.6</td> <td>12</td> <td>0.9</td>		nitrate as N	12	0.9	7	0.5	9	0.6	12	0.9	
tunc over soo suntar as S 18.8 1.2 42.0 2.5 57.1 3.6 134.9 8.4 anion sum 4.2 12.2 16.6 7.0 47.0 toxic over 1 for many plants boron as B 0.09 0.09 0.20 0.22 0.22 0.18 4.7.0 increasing problems start at 6 SAR 2.7 ** 10.2 ***** 12.0 ***** 19.3 ***** est. gypsum requirement-lbs./1,000 square feet 7 102 78 155 3.6 6.8% 0.0% Soldw Soldw <t< td=""><td>torta avez 200</td><td>phosphorus as P</td><td>0.8</td><td>0.0</td><td>0.1</td><td>0.0</td><td>0.0</td><td>0.0</td><td>134.0</td><td>0.0</td></t<>	torta avez 200	phosphorus as P	0.8	0.0	0.1	0.0	0.0	0.0	134.0	0.0	
twice over 1 for many plants 0.09 0.09 0.20 0.22 0.100 0.110 0.	tuxic over 800	surfate as 5	18.8	1.2	42.0	12.0	37.1	16.6	134.0	47.0	
total over 1 for many primes boron as D 0.05 <th< td=""><td>toxic over 1 for many plunts</td><td>boron as R</td><td>0.09</td><td>+.2</td><td>0.20</td><td>**</td><td>0.22</td><td>**</td><td>0.18</td><td>*</td></th<>	toxic over 1 for many plunts	boron as R	0.09	+.2	0.20	**	0.22	**	0.18	*	
line line <t< td=""><td>increasing problems start at 6</td><td>SAR</td><td>2.7</td><td>**</td><td>10.2</td><td>*****</td><td>12.0</td><td>*****</td><td>19.3</td><td>*****</td></t<>	increasing problems start at 6	SAR	2.7	**	10.2	*****	12.0	*****	19.3	*****	
infiltration rate inches/hourfair/slowslowslowslowslowsoil textureloany saudgravel > 2 mmsandy clay loangravel > 2 mmsandy clay	est, gypsum requirement-lbs./	1.000 square feet	7		102		78		155		
soil texture loamy said gravel > 2 mm sandy clay loam sandy	infiltratio	on rate inches/hour	fair/slow	,	slow		slow		slow		
sand 78.7% 2.3% 52.1% 0.0% 56.5% 0.2% 64.8% 0.0% silt 12.9% 20.3% 18.1% 17.2% clay 8.5% 27.6% 25.4% 17.9% line (calcium carbonate) no no no no Total nitrogen 0.055% 0.053% 0.040% 0.003% Total organic carbon 0.559% 0.468% 0.433% 0.033% carbon:nitrogen ratio 10.2 8.9 10.7 11.4 organic matter based on carbon 1.12% 0.94% 0.87% 0.07% moisture content of soil 6.7% 13.5% 9.7% 8.5%	soil textu	ure	loamy saud	gravel > 2 mm	sandy clay Ioam	gravel > 2 mm	sandy clay loam	gravel > 2 mm	sandy loam	gravel > 2 mm	
silt 12.9% 20.3% 18.1% 17.2% clay 8.5% 27.6% 25.4% 17.9% line (calcium carbonate) no no no no Total nirrogen 0.055% 0.053% 0.040% 0.003% Total organic carbon 0.559% 0.468% 0.433% 0.033% carbon:nitrogen ratio 10.2 8.9 10.7 11.4 organic matter based on carbon 1.12% 0.94% 0.87% 0.07% moisture content of soil 6.7% 13.5% 9.7% 8.5%	sand	I	78.7%	2.3%	52.1%	0.0%	56.5%	0.2%	64.8%	0.0%	
clay 8.5% 27.6% 25.4% 17.9% line (calcium carbonate) no no no no no Total nitrogen 0.055% 0.053% 0.040% 0.003% Total organic carbon 0.559% 0.468% 0.433% 0.033% carbon:nitrogen ratio 10.2 8.9 10.7 11.4 organic matter based on carbon 1.12% 0.94% 0.87% 0.07% moisture content of soil 6.7% 13.5% 9.7% 8.5%	sile	t	12.9%		20.3%		18.1%		17.2%		
lime (calcium carbonate) no no no Total nitrogen 0.055% 0.053% 0.040% 0.003% Total organic carbon 0.559% 0.468% 0.433% 0.033% carbon:nitrogen ratio 10.2 8.9 10.7 11.4 organic matter based on carbon 1.12% 0.94% 0.87% 0.07% moisture content of soil 6.7% 13.5% 9.7% 8.5%	clay	,	8.5%		27.6%		25.4%		17.9%		
Total nitrogen 0.055% 0.053% 0.040% 0.003% Total organic carbon 0.559% 0.468% 0.433% 0.033% carbon:nitrogen ratio 10.2 8.9 10.7 11.4 organic matter based on carbon 1.12% 0.94% 0.87% 0.07% moisture content of soil 6.7% 13.5% 9.7% 8.5%	lime (cal	cium carbonate)	no		no		no		no		
Total organic carbon 0.559% 0.468% 0.433% 0.033% carbon:nitrogen ratio 10.2 8.9 10.7 11.4 organic matter based on carbon 1.12% 0.94% 0.87% 0.07% moisture content of soil 6.7% 13.5% 9.7% 8.5%	Total nit	rogen	0.055%		0.053%		0.040%		0.003%		
carbon:nitrogen ratio 10.2 8.9 10.7 11.4 organic matter based on carbon 1.12% 0.94% 0.87% 0.07% moisture content of soil 6.7% 13.5% 9.7% 8.5%	Total org	anic carbon	0.559%		0.468%		0.433%		0.033%		
organic matter based on carbon 1.12% 0.94% 0.87% 0.07% moisture content of soil 6.7% 13.5% 9.7% 8.5%	carbon:n	itrogen ratio	10.2		8.9		10.7		0.07%		
invisure content of son 0.770 [5.370 2.770 6.370	organic r	content of soil	1.12%		0.94%		0.87%		8.5%		
half saturation percentage 14.7% 28.2% 24.6% 19.5%	half satu	ration percentage	14 7%		28.2%		24.6%		19.5%		

Elements are expressed as mg/kg dry soil or mg/l for saturation extract. pH and ECe are measured in a saturation paste/extract. nd means not detected.

WALLACE LABS	SOILS REPORT	Print Date	Mar. 18, 2009	Receive Date	3-12-09				
365 Coral Circle	Location	Newport Beach Ci	ty Hall & Park, P	roject No. 602184-	002				
El Segundo, CA 90245	Requester	Vivian Cheng, Lei	ghton Consulting	Inc.					
(310) 615-0116	graphic interpretation: * verv low.	** low, *** moderate	e e						
ammonium bicarbonate/f	DTPA	* * * * high * * * * *	en high						
extractable - mg/kg soil	Sample ID Number	09-77-13		09-77-14		09-77-15		09-77-16	
Interpretation of data	oumpte in rumou	Ba-1 15		Ba-1 22.5'		Ba-1 30		Ba-1 37.5'	
low medium high	elements		graphic		graphic		graphic		graphic
0 - 7 8-15 over 15	phosphorus	4.35	••	7.60	**	14.28	****	4.08	••
0-60 60-120 121-180	potassium	33.03	••	22.71	•	41.67	**	21.39	•
0-4 4-10 over 10	iron	2.22	•	6.90	•••	5.45	***	4.29	***
0-0.5 0.6-1 over 1	manganese	0.25	•	0.88	***	1.09	****	0.76	***
0-1 1-1.5 over 1.5	zinc	0.10	•	0.05	•	1.43	***	0.40	*
0-0.2 0.3-0.5 over 0.5	copper	0.28		0.16	•	0.63	****	0.10	•
0-0.2 0.2-0.5 over 1	boron	0.02	•	n d	•	0.07	*	0.03	
ratio of calcium to magnesium	calcium	464.79	****	210.87		01532	****	218.42	*****
should be less than potassium	sodium	028.53	*****	483.67	****	1 079 92	*****	384.49	*****
silouid be less than potassium	solfur	59.62	••	27.14	**	61.79	**	20.34	•
	molybdenum	0.06	•••	0.14	****	0.37	••••	0.05	•••
	nickel	0.20	•	0.16	•	0.69	•	0.13	•
The following trace	aluminum	nd	•	0.04	•	nd	•	n d	•
elements may be toxic	arsenic	0.03	•	0.06	•	n d	*	0.03	•
The degree of toxicity	barium	nd	•	0.14	•	n d	•	0.01	•
depends upon the pH of	cadmium	0.04	•	0.01	·	0.30	•	0.27	•
the soil, soil texture,	chromium	n d	•	n d	•	nd	•	n d	:
organic matter, and the	cobalt	0.17	:	0.08		0.08		0.04	
concentrations of the	lithium	0.19		0.04		0.17	•	0.03	•
well as to their interactions	mercury	0.55 n.d		n.12		n d	*	nd	
	seienium	0.17		0.03	•	nd	•	0.29	•
The pH optimum depends	silver	n d	•	n d	•	n d	•	n d	•
upon soil organic	strontium	4.30	•	1.96	•	3.61	•	1,30	•
matter and clay content-	tin	nd	*	nd	•	n d	•	n d	•
for clay and loam soils:	vanadium	0.29	•	0.19	•	0,26	•	0.13	•
under 5.2 is too acidic		1							
6.5 to 7 is ideal	Saturation Extract	1	i i						
over 9 is too alkaline	pH value	6.30	***	5.91	**	6.19	***	7.11	***
The ECc is a measure of	ECe (milli-	4.67	*****	3.68	****	6.54	****	3.99	****
the soil salinity:	mho/cm)	1	millieq/l		milleq/1		milleq/1	55.0	mined/1
1-2 affects a few plants	calcium	50.8	2.5	41.7	2.1	88.3	4.4	55.0 79.8	2.8
2-4 affects some plants,	sodium	62.1	5.1	546.2	4.2	878 7	38.2	565.1	24.6
>4 affects many prairis.	Joorna	2.2	30.0	540.2	0.2	4.3	0.1	5.2	0.1
	cation sum		37.8	0.0	30.2		54.8		34.0
problems over 150 ppm	chloride	1,217	34.3	958	27.0	1,802	50.8	1,058	29.8
	nitrate as N	11	0.8	9	0.6	14	1.0	10	0.7
	phosphorus as P	0.4	0.0	0.6	0.0	0.5	0.0	0.3	0.0
toxic over 800	sulfate as S	70.8	4.4	50.6	3.2	86.7	5.4	43.8	2.7
	anion sum		39.5		30.8		57.2	0.02	33.2
toxic over 1 for many plants	boron as B	0.23	**	0.10	*	0.14	*****	0.03	*****
increasing problems start at 6	SAR 1.000 square feet	15.4		13.4		189		66	
est. gypsum requirement-ins./	1,000 square leet] 1/2	i i	elow/fair		slow/fair		fair	
intarratio soil taxti	n rate mones/nour	siow sandy loam	aravel > 2 mm	Slow/Tall	gravel > 2 mm	sandy loam	σ ravel > 2 mm	sand	gravel > 2 mm
sand		75.9%	0.0%	86.4%	0.0%	67.0%	6.5%	88.5%	0.4%
silt		6.7%		6.8%		16.1%		6.1%	
clay		17.4%		6.8%		16.9%		5.4%	
lime (cal	cium carbonate)	no		no		no		no	
Total niti	rogen	0.001%		0.001%		0.004%		0.000%	
Total org	anic carbon	0.026%		0.005%		0.024%		0.005%	
carbon:n	itrogen ratio	29.5		3.8		5.6		47.0	
organic u	natter based on carbon	0.05%		0.01%		0.05%		4.0%	
moisture balf control	content of son	24 5%		4.0%		28.9%		17.8%	
nan satu	which percentage	27.370		10.270		20.770			

pH and ECe are measured in a saturation paste/extract. nd means not detected. Sand, silt, clay and mineral content based on fraction passing a 2 mm screen.

WALLACE LABS	SOILS REPORT	Print Date	Mar. 14, 2009	Receive Date	3-12-09		
365 Coral Circle	Location	Newport Beach C	ity Hall & Park, P	roject No. 602184	-002		
El Segundo, CA 90245	Requester	Vivian Cheng, Le	ghton Consulting	hic.			
(310) 615-0116	graphic interpretation: * very low,	** low, *** moderate					
ammonium bicarbonate/I	DTPA	* * * * high. * * * * *	very high				
extractable - mg/kg soil	Sample ID Number	09-72-24		09-72-25		09-72-26	
Interpretation of data		HA-1 6"		HA-1 18"		HA-1 36"	
low medium high	elements		graphic		graphic		graphic
0 - 7 8-15 over 15	phosphorus	1.12	•	0.77	•	2.09	•
0-60 60 -120 121-180	potassium	43.86	**	34.01	**	34.51	**
0 - 4 + 4 - 10 over 10	iron	3.79	**	2.89	**	4.39	***
0-0.5 0.6-1 over 1	manganese	0.66	***	0.53		0.81	***
0-02 03-05 over 05	conner	0.08	****	0.40	****	1.11	****
0-0.2 0.2-0.5 over 1	boron	0.06	•	0.05	•	0.03	•
ratio of calciun to magnesium	calcium	411.18	****	413.84	****	388.22	***
needs to be more than 2 or 3	magnesium	450.70	*****	409.61	*****	851.86	*****
should be less than potassium	sodium	42.26	*	74.10	**	477.29	****
	sulfur	3.90	*	3.09	•	7.67	*
1	molybdenum	0.04	***	0.05	***	0.05	***
The following trace	aluminum	0.49	•	0.23		0.00 nd	•
elements may be toxic	arsenic	0.08	•	0.05	•	0.17	*
The degree of toxicity	barium	2.78	•	2.27	•	1.44	*
depends upon the pH of	cadmium	0.19	*	0.04	•	0.08	•
the soil, soll texture,	chromium	nd	*	nd	•	nd	*
organic matter, and the	cobalt	0.03	*	0.02	•	0.04	*
concentrations of the	lead	1.32	**	0.43	•	0.77	•
individual elements as	lithium	0.20	*	0.22	•	0.22	•
well as to their interactions.	mercury Isolonium	nd	*	nd	*	n a 0.22	*
The pH optimum depends	silver	n d	•	nd		n d	*
upon soil organic	strontium	2.56	•	3.11	•	2.86	*
matter and clay content-	tin	nd	•	nd	*	nd	*
for clay and loam soils:	vanadium	0.58	•	0.39	•	0.47	•
under 5.2 is too acidic							
6.5 to 7 is ideal	Saturation Extract						
over 9 is too alkaline	pH value	7.51	****	7.63	****	7.34	***
The ECe is a measure of	ECe (milli-	0.48	**	0.32	*	0.28	*
the soil salinity:	mho/cm)		millieq/l		millieq/l	11.7	mineq/i
1-2 affects a few plants	calcium	16.8	0.8	9.0	0.5	11.7	0.6
> 4 affects many plants	sodium	58.4	1.1	48.0	21	50.9	2.2
- 4 ancers many mans.	potassium	3.7	0.1	2.5	0.1	7.9	0.2
	cation sum		4.6		3.1		4.2
problems over 150 ppm	chloride	44	I.2	15	0.4	16	0.5
	nitrate as N	3	0.2	2	0.1	3	0.2
	phosphorus as P	0.3	0.0	0.2	0.0	0.6	0.0
toxic over 800	sultate as S	12.4	0.8	10.1		10.9	1.4
toxic over 1 for many plants	horon as B	0.01	*	0.10	*	0.05	*
increasing problems start at 6	SAR	2.6	**	3.0	**	2.3	**
est. gypsum requirement-lbs./	1,000 square feet	9		14		86	
infiltratio	on rate inches/hour	slow		slow	,	slow	
soil textu	ire	sandy clay loam	gravel > 2 mm	sandy loam	gravel > 2 mm	sandy clay loam	gravel > 2 mm
sand		67.2%	0.1%	78.6%	1.3%	57.6%	1.4%
silt		12.5%		7.6%	•	12.4%	
clay Rue (m)	cium corbonate)	20.3%		13.8%		30.0%	
Total nite	rogen	0.031%		0.017%		0.060%	
Total org	anic carbon	0.302%		0.154%	-	0.504%	
carbon:n	itrog en ratio	9.8		8.9		8.5	
organic n	natter based on carbon	0.60%		0.31%	,	1.01%	i.
moisture	content of soil	13.8%		12.8%	,	13.4%	
half satu	ration percentage	18.1%		19.0%	1	30.6%	

pH and ECe are measured in a saturation paste/extract. nd means not detected.

WALLACE LABS	SOILS REPOR	RT	Print Date	March 16, 2009	Receive Date	3-12-09		
365 Coral Circle	Location		" Newport Beach City I	Hall & Park, Projec	et No. 602184-026			
El Segundo, CA 90245	Requester		Vivian Cheng, Leight	on Consulting Inc.				
(310) 615-0116	graphic interpretation:	• very low.	** low, *** moderate	0				
ammonium bicarbonate/	TPA	,	* * * * high * * * * * vary	high				
extractable - mg/kg soil	Sample	D Number	09-75-25	ingu	09-75-26		09-75-27	
Interpretation of data			HA-2 6"		HA-2 18"		HA-2 36"	
low medium high	elements			graphic		graphic		graphic
0 - 7 8-15 over 15	phosphorus		1.37	•	2.09	•	2.66	•
0-60 60 -120 121-180	potassium		37.67	••	45.21	••	29.23	•
0-4 4-10 over 10	iron		2.00	•	1.05	•	1.53	•
0-0.5 0.6-1 over 1	manganese		0.51	••	0.60	••	0.37	••
0 - 1 [- 1.5 over 1.5	Zinc		0.83	••	1.95		0.73	
0.02 0.3 0.5 0 over 1	boron		0.78	•••	0.22	***	0.49	•
ratio of calcium to magnesium	calcium		366.23	***	335.42		296.66	•••
needs to be more than 2 or 3	magnesium		569.94	•••••	791.62	*****	533.94	*****
should be less than potassium	sodium		467.65	•••••	442.73	*****	311.90	••••
	sulfur		5.97	•	10.61	•	11.64	•
	molybdenum		0.07	•••	0.35	****	0.26	****
	nickel		0.33	•	0.16	•	0.10	•
The following trace	aluminum		nd	•	nd	•	л d	:
elements may be toxic	arsenic		0.02	:	0.02	•	0.07	•
depends upon the nH of	cadmium		0.47		1.68		0.66	•
the soil, soil texture,	chromium		nd	•	nd	•	n d	•
organic matter, and the	cobalt		0.05	•	0.06	•	0.05	•
concentrations of the	lead		0.87	•	0.08	•	0.28	•
individual elements as	lithium		0.18	•	0.20	•	0.16	•
well as to their interactions.	mercury		nd	•	n d	•	nd	•
	selenium		0.19	•	0.24	•	nd	•
The pH optimum depends	silver		n d	:	nd	:	n d 1 23	:
matter and clay content-	strontium		2.42		1.17 p.d	•	1.25 nd	•
for clay and loam soils:	vanadium		0.57		0.29	•	0.29	•
under 5.2 is too acidic								
6.5 to 7 is ideal	Saturation Extrac	et	1					
ov er 9 is too alkaline	pH value		8.27	****	8.32	••••	8.25	••••
The ECe is a measure of	ECe (milli-		0.44	••	0.49	••	0.68	••
the soil salinity:	mho/cm)			millieq/l		millieq/l		millieq/1
1-2 affects a few plants	calcium		8.8	0.4	9.5	0.5	15.7	0.8
2-4 affects some plants,	magnesium		4.6	0.4	4.3	0.4	7.8	0.6
> 4 affects many plants.	sodium		86.5	3.8	97.0	4.2	118.8	5.2
	potassium		4.8	0.1	1.9		2.1	
problems over 150 ppm	chloride		7	4.7	8	0.2	34	0.9
problems over 150 ppm	nitrate as N		2	0.1	2	0.2	17	1.2
	phosphorus as P		0.2	0.0	0.4	0.0	0.3	0.0
toxic over 800	sulfate as S		12.4	0.8	21.8	1.4	29.4	1.8
	anion sum			1.1		1.8		4.0
toxic over 1 for many plants	boron as B		0.12	•	0.22	**	0.12	•
increasing problems start at 6	SAR		5.9	***	6.5	****	6.1	
est. gypsum requirement-lbs./	1,000 square feet		82		/9		30	
infiltratio	n rate inches/hour		very slow		very slow	aravel > 2 mm	SiOW	arrayel > 2 mm
son text	ire		65.7%	0.9%	66.3%	16.2%	78.4%	12.8%
silt			18.2%	0.270	21.0%		14.9%	
clay			16.1%		12.7%		6.7%	
lime (cal	cium carbonate)		no	•	no		no	
Total nit	rogen		0.030%		0.018%		0.013%	
Total org	anic carbon		0.311%		0.152%		0.067%	
carbon:n	itrogen ratio		10.4		8.3		5.2	
organic n	natter based on carbo	0 n	0.62%	,	0.30%		0.13%	
moisture	content of soil		12.8%		26.1%		19.5%	
nail satu	anon percentage		22.3%		20.170		17.570	

pH and ECe are measured in a saturation paste/extract. nd means not detected.

WALLACE LABS	SOILS REPORT	Print Date	Mar. 18, 2009	Receive Date	3-12-09		
365 Coral Circle	Location	Newport Beach Ci	ity Hall & Park, H	Project No. 602184-	002		
El Segundo, CA 90245	Requester	Vivian Cheng, Lei	ghton Consulting	g Inc.			
(310) 615-0116	graphic interpretation: * very low,	** low, *** moderate		-			
ammonium bicarbonate/f	DTPA	****high *****	very high				
extractable - mg/kg soil	Sample ID Number	09-77-17	<u> </u>	09-77-18		09-77-19	
Interpretation of data		HA-3 6"		HA-3 18"		HA-3 36"	
low medium high	elements		graphic	1	graphic		graphic
0 - 7 8-15 over 15	phosphorus	2.10	•	2.40	•	3.69	••
0-60 60 -120 121-180	potassium	109.28	•••	149.54	****	155.82	••••
0 - 4 4 - 10 over 10	iron	2.39	•	1.49	•	1.38	•
0-0.5 0.6-1 over 1	manganese	0.29	•	0.19	•	0.16	•
0-1 1-1.5 over 1.5	zinc	0.72	••	0.64	••	0.97	
$0 - 0.2 \ 0.3 - 0.5 \ 0.9 \ 0.5$	boron	3.01	•	2.40	***	2.01	***
ratio of calcium to magnesium	calcium	297.02	•••	308.96	***	252.74	***
needs to be more than 2 or 3	magnesium	1,103.92	*****	1,265.60	*****	1,132.10	*****
should be less than potassium	sodium	557.74	*****	1,270.78	•••••	1,108.88	*****
	sulfur	4.28	•	10.67	•	32.83	••
,	molybdenum	1.00	*****	3.81	*****	6.01	*****
	nickel	0.31	•	0.10	•	0.11	*
The following trace	aluminum	nd	•	n d		n d	
The degree of toxicity	harium	1.02	•	0.07	•	0.03	•
depends upon the pH of	cadinium	1.57	••	0.03	•	0.39	•
the soil, soil texture,	chromium	nd	•	nd	•	n d	•
organic matter, and the	cobalt	0.05	•	0.06	•	0.04	•
concentrations of the	lead	0.40	*	0.40	•	0.44	•
individual elements as	lithium	0.17	•	0.18	•	0.15	•
well as to their interactions.	mercury	nd	•	nd	•	n d	•
The pH optimum depends	selenium	nd		0.15		0.20	
upon soil organic	strontium	168	•	2.67	•	2.05	•
matter and clay content-	tin	n d	•	n d	•	nd	•
for clay and loam soils:	vanadium	0.52	•	0.56	•	0.48	•
under 5.2 is too acidic							
6.5 to 7 is ideal	Saturation Extract]					
over 9 is too alkaline	pH value	7.85	****	8.46	****	8,23	****
The ECe is a measure of	ECe (milli-	0.61	*•	0.68	••	1.14	***
the soil salinity:	mho/cm)		millieq/l		millieq/1		millieq/l
1-2 affects a few plants	calcium	9.7	0.5	8.2	0.4	10.9	0,5
2-4 affects some plants,	magnesium	7.6	0.6	4.7	0.4	6.8	0.6
> 4 affects many plants.	sodium	95.4	4.1	133.7	5.8	198.7	8.0
	cation sum	2.2	53	3.5	6.7	2.0	9.8
problems over 150 ppm	chloride	45	1.3	39	1.1	128	3.6
	nitrate as N	5	0.4	4	0.3	3	0.2
	phosphorus as P	0.3	0.0	0.4	0.0	0.3	0.0
toxic over 800	sulfate as S	8.5	0.5	16.4	1.0	38.2	2.4
torio com (for many plants	anion sum		2.2	0.40	2.4	0.29	6.2
toxic over 1 for many plants	SAR	0.12	***	0.49	*****	0.38	*****
est, gypsum requirement-lbs//	.000 square feet	101		224		195	
infiltratio	n rate inches/hour	slow		very slow		slow	
soil textu	re	gravelly clay loam	gravel > 2 mm	gravelly clay loam	gravel > 2 mm	loam	gravel > 2 mm
sand		33.0%	35.4%	29.8%	21.1%	42.5%	16.6%
silt		38.7%		37.2%		32.5%	
clay		28.2%		32.9%		25.0%	
lime (cale	cium carbonate)	yes		yes		yes	
1 otal nitr Total org	ogen anic carbon	0.078%		0.062%		0.044%	
carbon:ni	trogen ratio	4.6		3.190%		3.0	
organic m	atter based on carbon	0.71%		0.39%		0.27%	
moisture	content of soil	26.4%		30.9%		26.5%	
half satur	ation percentage	39.1%		48.6%		45.1%	

pH and ECe are measured in a saturation paste/extract. nd means not detected.

	WALLACE LABS	SOILS REPOR	RT	Print Date	Mar.	18, 2009	Receive Date	3-12-09		
ĺ	365 Coral Circle	Location		 Newport Beach Ci	ty Hali	& Park, P	roject No. 602184-	002		
	El Segundo, CA 90245	Requester		Vivian Cheng, Lei	ghton (Consulting	Inc.			
	(310) 615-0116	graphic interpretation	* very low,	** low, *** moderate						
1	ammonium bicarbonate/D	DTPA		* * * * high, * * * * *	ery high	ı				
	extractable - mg/kg soil	Sample	ID Number	09-77-20			09-77-21		09-77-22	
	Interpretation of data			HA-4 6"			HA-4 18"		HA-4 36"	
	low medium high	elements			graphic	;		graphic		graphic
	0 - 7 8-15 over 15	phosphorus		1.41	•		6.73	••	4.65	••
	0-60 60 -120 121-180	potassium		29.46	•		36.85	**	52.70	**
	0-4 4-10 over 10	iron		1.21	•		1.49	•	1.39	*
	0-0.5 0.6-1 over 1	manganese		0.10	:		0.10	**	0.18	•
	0 - 1 - 1.5 over 0.5	conner		0.08			1.32	****	3.94	*****
	0-0.2 0.2-0.5 over 1	boron		0.50	****		0.56	****	0.33	***
	ratio of calcium to magnesium	calcium		420.94	****		540.73	****	824.58	*****
	needs to be more than 2 or 3	magnesium		1,514.23	*****		1,964.73	•••••	1,815.19	*****
	should be less than potassium	sodium		1,194.97	*****	[1,704.56	*****	1,721.48	*****
		sulfur		7.03	•		186.69	***	141.25	***
1		molybdenum		0.20	****		0.89	••••	1.01	*****
		nickel		0.19			0.17	:	0.38	•
	The following trace	arsenic		n d 0.09	:		0.05		nd	•
	The degree of toxicity	harium		0.09	•		0.05	•	0.02	*
	depends upon the pH of	cadmium		0.28			0.19	•	0.18	*
	the soil, soil texture,	chromium		n d	•		nd	•	n d	•
	organic matter, and the	cobalt		0.06	•		0.04	•	0.06	•
	concentrations of the	lead		0.22	•		0.38	•	0.42	•
	individual elements as	lithium		0.22	*		0.30	•	0.46	*
	well as to their interactions.	mercury		n d	*		n d	•	n d	*
	The all antimum domanda	selenium		0.03	:		0.19	:	0.24	•
	The pri optimum depends	strontium					5.28	**	6.06	**
	matter and clay content-	tin		4.22	•			•	nd	•
	for clay and loam soils:	vanadium		0.89	•		0.82	•	0.45	*
	under 5.2 is too acidic									
	6.5 to 7 is ideal	Saturation Extra	ct	1						
	over 9 is too alkaline	pH value		8.14	****		7.13	•••	6.39	***
l	The ECe is a measure of	ECe (milli-		0.80	***		7.75	*****	9.78	*****
	the soil salinity:	mho/cm)				millieq/l		millieq/1		millieq/l
	1-2 affects a few plants	calcium		13.6		0.7	200.0	10.0	282.4	14.1
	2-4 affects some plants,	magnesium		5.2		0.4	201.3	16.6	299.1	24.7
	> 4 affects many plants.	sodium		146.4		6.4	1,006.8	43.8	1,039.9	45.2
		potassium		2.4		0.1	2,8	70.5	5.1	84.1
	problems over 150 ppm	cation sum		87		7.3	2 111	59.5	2.706	76.2
	problems over 150 ppm	nitrate as N		3		0.2	17	1.2	29	2.0
		phosphorus as P		0.4		0.0	0.5	0.0	0.6	0.0
	toxic over 800	sulfate as S		17.2		1.1	194.9	12.2	134.0	8.4
		anio n sum				3.6		72.9		86.7
	toxic over 1 for many plants	boron as B		0.56	•••		0.93	****	0.68	***
	increasing problems start at 6	SAR		8.6	****		12.0	****	10.3	*****
i	est. gypsum requirement-lbs.//	1,000 square feet					303		305	
	infiltratio	on rate inches/hour		very slow		1 > 2	slow/fair	aroual > 2 mm	slow/fair	oravel > 2 mm
	son textu	ire		36.6%	grave	0.0%	53.5%	13.7%	37.0%	8.4%
	sailt			20.3%		0.070	33.8%	13.770	33.5%	
	clav			43.1%			32.7%		29.5%	
	lime (cal	cium carbonate)		no			no		no	
	Total nitr	rogen		0.036%			0.021%		0.027%	
	Total org	anic carbon		0.295%			0.130%	1	0.195%	
	carbon:ni	itrogen ratio		8.3			6.2		7.3	
	organic n	natter based on carb	oon	0.59%			0.26%		0.39%	
	moisture	content of soil		29.4%	,		26.9%		30.7%	
	nair satur	auon percentage		50.4%			40.2%		40.070	

pH and ECe are measured in a saturation paste/extract. nd means not detected.

WALLACE LABS	SOILS REPOR	T	Print Date	Mar. 14	, 2009	Receive Date	3-12-09				
365 Coral Circle	Location		Newport Beach	City Hall d	& Park, I	Project No. 6021	84-002				
El Segundo, CA 90245	Requester		Vivian Cheng, L	eighton C	onsultin	g Inc.					
(310) 615-0116	graphic interpretation:	* verv low.	** low. *** modera	te		6					
ammonium bicarbonate/[**** high ****	• very high							
extractable - mg/kg soil	Sample I	D Number	09-72-01	ici y ingli		09-72-02		09-72-03	3	09-72-04	
Interpretation of data			NB-1 6"			NB-1 18"		NB-1 3	,	NB-1 7.5'	
low medium high	elements			graphie			graphic		graphic		graphic
0 - 7 8-15 over 15	phosphorus		1.56	*	1	1.46	•	1.20	•	3.92	**
0-60 60 -120 121-180	potassium		55.14	**		45.51	**	41.32	**	17.88	•
0-4 4-10 over 10	iron		9.41	***		9.12	***	2.38	•	3.24	**
0-0.5 0.6-1 over 1	manganese		3.98	****	ľ	5.36	****	0.79	***	0.19	•
0-1 1-1.5 over 1.5	zinc		0.69	**		0.43	-	0.32	•	0.16	••••
0-0.2 0.3-0.5 over 1	boron		0.30	**		0.10	•	0.53	****	0.08	
ratio of calcium to magnesium	calcium		406.94		ļ	417.16	****	355.76	•••	341.61	***
needs to be more than 2 or 3	magnesium		488.28	*****	[520.67	*****	935.71	*****	363.69	*****
should be less than potassium	sodium		516.63	*****		521.36	*****	1,179.55	*****	683.19	****
	sulfur		12.96	•		13.02	•	62.53	**	32.27	**
	molybdenum		n d	•		0.02	***	0.02	**	0.06	***
	nickel		0.71	•		0.95	•	0.13		0.02	
The following trace	aluminum		nd	•		n d	:	nd		n a n a	
The degree of toxic	barium		0.07			2.11	•	0.08	•	0.25	•
depends upon the pH of	eadmium		0.07	•	1	0.08	•	0.09	*	0.03	•
the soil, soil texture,	chromium		0.01	•		0.02	•	n d	•	nd	•
organic matter, and the	cobalt		0.07	•		0.07	•	0.05	•	0.04	•
concentrations of the	lead		0.96	•		0.86	•	0.50	*	0.14	•
individual elements as	lithium		0.21	•	1	0.23	•	0.21	*	0.16	•
well as to their interactions.	mercury		nd	•		n d	•	n d	*	nd	•
The off entire descende	seleninm		0.19	•		0.11		0.40	•	0.32	
The pH optimum depends	suver		n d 2 8 1	:		n d 3 97		416		3.03	•
matter and clay content-	tin		3.81	•		3.97 n.d	•	n d	•	nd	•
for clay and loam soils:	vanadium		0.22	•		0.19	•	0.92	•	0.24	•
under 5.2 is too acidic											
6.5 to 7 is ideal	Saturation Extrac	t	1								
over 9 is too alkaline	pH value		6.90	***		6.73	***	7.71	****	7.10	•••
The ECe is a measure of	ECe (milli-		0.80	***		0.84	***	2.71	****	4.45	****
the soil salinity:	mho/cm)			1	millieq/l		millie	ą/1	millieq/l		millieq/l
1-2 affects a few plants	calcium		9.6		0.5	10.1	0.	5 21.7	1.1	39.5	2.0
2-4 affects some plants,	magnesium		4.7		0.4	5.0	0.	4 18.1	1.5	35.9	3.0
>4 affects many plants.	sodium		141.3		6.1	149.3	0.	5 483.7 1 73	21.0	729.4	0.1
	cation sum		2.0		71	2.5		5	23.8		36.7
problems over 150 ppm	chloride		169		4.7	186	5.	2 843	23.7	1.561	44.0
	nitrate as N		3		0.2	3	0.	2 5	0.4	10	0.7
	phosphorus as P		0.1		0.0	0.1	0.	0 0.4	0.0	0.4	0.0
toxic over 800	sulfate as S		19.4		1.2	23.0	1	4 72.9	4.6	80.6	5.0
	anio n sum				6.1		6.	9	28.7	0.12	49.8
toxic over 1 for many plants	boron as B		0.23			0.17	*	0.40	****	20.2	*****
est gypsum re(uirement-lbs /	1 000 square feet		9.4			9.0		206		117	
infiltration	on rate inches/bour		very slow		1	very slow		slov	v	very slow	,
soil text	nre		sandy clay loam	gravel >	· 2 mm	sandy clay loam	gravel > 2 m	m sandy clay loan	n gravel > 2 mm	sandy loam	gravel > 2 mm
sand	1		63.0%	0.7	%	60.8%	0.0%	62.9%	6 18.3%	79.0%	5.1%
sil	t		16.5%			17.4%		11.4%	6	10.7%	,
clay	Ý		20.6%			21.8%		25.7%	6	10.3%	J
lime (cal	lcium carbonate)		nc	•		no		n	0	no	
Total nit	rogen		0.041%			0.036%		0.0129	0 4	0.000%	,
Total org	game carbon		0.391%			0.355%		0.200%	7	0.020% NA	
carbonin	ntrogen ratio	on	0.78%			9.8		0.40%	6	0.05%	,
moisture	content of soil	011	11.5%	,		11.9%		12.4%	6	7.0%	,
half satu	ration percentage		24.7%			25.5%		34.2%	<u>´o</u>	18.5%	

pH and ECe are measured in a saturation paste/extract. nd means not detected.

WALLACE LABS	SOILS REPOR	T	Print Date	Mar. 14, 2009	Receive Date	3-12-09					
365 Coral Circle	Location		Newport Beach	City Hall & Park.	Project No. 6021	84-002					
El Segundo, CA 90245	Requester		Vivian Cheng, 1	eighton Consultin	g Inc.						
(310) 615-0116	graphic interpretation:	* very low	** low *** moders	ite	6						
ammonium bicarbonate/I		,	**** high ***	* * vom bisk							
extractable - mg/kg soil	Sample U	D Number	09-72-04	very nigh	09-72-06		09.72-07	,	09-72-08		
Interpretation of data	Sumple	Diffuncti	NB-1 15		NB-1 22.5'		NB-1 30	,	NB-1 37.5		
low medium high	elements			graphic		graphic		graphic		graphic	
0-7 8-15 over 15	phosphorus		2.07	*	10.90	***	10.38	***	1.55	*	
0-60 60 -120 121-180	potassium		17.14	•	35.85	**	32.58	**	12.15	•	
0-4 4-10 over 10	iron		1.59	•	3.25	**	6.26	***	3.46	**	
0-0.5 0.6-1 over 1	manganese		0.11	•	0.16	•	1.18	****	0.22	•	
0 - 1 I - 1.5 over 1.5	zinc		0.23	•	0.63	**	2.72	****	0.25	•	
0-0.2 0.3-0.5 over 0.5	copper		0.16	•	0.67	****	6.08	*****	0.13	•	
0-0.2 0.2-0.5 over 1	boron		0.10	**	0.16	**	0.13	••	0.08	•	
ratio of calcium to magnesium	calcium		209.02	***	449.68	****	360.34	***	154.96	**	
about the loss than not account	magnesium		240.41	*****	769.86	*****	565.65	*****	224.81		
should be less than potassium	sulfur		533.21		854.29		5/9.00		340.06	**	
	molybdenum		30.40	***	55.52	*****	131	*****	0.62	****	
1	nickel		0.03	•	0.04	•	0.08	*	n.d		
The following trace	aluminum		n d	•	n d	•	n d	•	nd	•	
elements may be toxic	arsenic		n d	•	0.03	•	nd	•	nd	•	
The degree of toxicity	barium		0.35	•	0.14	•	0.26	•	0.17	•	
depends upon the pH of	cadmium		0.15	•	0.84	•	0.56	•	0.19	•	
the soil, soil texture,	chromium		nđ	•	n d	•	nd	•	0.01	•	
organic matter, and the	cobalt		0.02	•	0.02	•	0.06	•	nd	•	
concentrations of the	lead		0.18	•	0.14	*	0.57	•	0.02	•	
individual elements as	lithium		0.10	•	0.25	•	0.19	•	0.08	•	
well as to their interactions.	mercury		nd	•	n d	*	nd	•	nd	•	
	selenium		0.08	•	0.16	*	0.17	•	0.06	•	
The pH optimum depends	silver		nd	•	nd	•	nd	•	n d		
metter and clay content-	tin		1.57	:	2.54	:	1.92	:	0.77	:	
for clay and loam soils:	vanadium			:	n d 0.26	•	u d 0.20	•	0.05	•	
under 5.2 is too acidic	vanaulum		0.19		0.20		0.20		0.05		
6.5 to 7 is ideal	Saturation Extract	t									
over 9 is too alkaline	pH value		7 54	****	7 37	***	7.96	****	7.90	****	
The ECe is a measure of	ECe (milli-		5 57	*****	3.46	****	1.60	***	4 07	*****	
the soil salinity:	mho/cm)		5.57	millieg/l	5.40	millieg/l	1.00	millieg/1	1101	mill	lieg/1
1-2 affects a few plants	calcium		70.9	3.5	33.0	1.6	9.3	0.5	61.6		3.1
2-4 affects some plants,	magnesium		86.7	7.2	45.8	3.8	9.7	0.8	99.5		8.2
> 4 affects many plants.	sodium		862.4	37.5	584.1	25.4	276.3	12.0	597.4	2	26.0
	potassium		2.7	0.1	4.9	0.1	2.2	0.1	3.7		0.1
	cation sum			48.3		31.0		13.3		3	37.4
problems over 150 ppm	chloride		2,069	58.3	1,160	32.7	348	9.8	1,461	4	11.2
	nitrate as N		13	0.9	8	0.6	4	0.3	13		0.9
t	phosphorus as P		0.5	0.0	1.3	0.0	2.2	0.1	0.3		0.0
toxic over 800	suitate as S		89.2	5.6	91.3		55.0	3.4	/6./		4.8
toxic over 1 for many plants	horon as B		0.06	• 04.8	0.15	*	0.11	•	0.05		10.9
increasing problems start at 6	SAR		16.2	****	15.4	*****	151	*****	10.9	*****	
est. gypsum requirement-lbs./	1,000 square feet		91		149		101		58		
infiltratio	on rate inches/hour		slow/fair		slow/fair		slow		fair/slow		
soil textu	ire		loamy sand	gravel > 2 mm	sandy loam	gravel > 2 mm	loamy sand	gravel > 2 mm	sand	gravel > 2 i	mm
sand			79.8%	0.5%	71.1%	1.0%	78.1%	0.5%	87.5%	1.2%	
silt			13.4%	,	15.2%		14.6%		9.9%		
clay			6.9%		13.7%		7.3%		2.6%		
lime (cal	cium carbonate)		no		no		no		no		
Total nit:	rogen		0.021%		0.008%		0.011%		0.000%		
Total org	anic carbon		0.814%		0.041%		0.045%		1.264%		
carbon:n	itrogen ratio		38.7		5.4		4.1		NA		
organic n	natter based on carbo	n	1.63%		0.08%		0.09%		2.53%		
half sature	content of soil		0.4%		15.8%		12.8%		0.3%		
nan satu	anon percentage		10.070		20.370		66.570		10.4/0		

pH and ECe are measured in a saturation paste/extract. nd means not detected.

WALLACE LABS	SOILS REPO	RT	Print Date	Mar. 14, 2009	Receive Date	3-12-09					
365 Coral Circle	Location		Newport Beach	City Hall & Park,	Project No. 6021	84-002					
El Segundo, CA 90245	Requester		Vivian Cheng, I	eighton Consultin	ig Inc.						
(310) 615-0116	graphic interpretation	* very low,	** low, *** modera	te	0						
ammonium bicarbonate/[)TPA		* * * * bigh * * * *	• • very high							
extractable - mg/kg soil	Sample	I ID Number	09-72-09	very night	09-72-10	1	09-72-11		09-72-12		
Interpretation of data	campie		NB-2 6"		NB-2 18"		NB-2 3'		NB-2 7.5		
low medium high	elements	1		graphic		graphic		graphic		graphic	
0 - 7 8-15 over 15	phosphorus	ĺ	7.74	**	7.05	**	5.07	**	3.99	••	
0-60 60 -120 121-180	potassium		58.95	••	51.85	**	26.41	•	11.17	•	
0-4 4-10 over 10	iron		24.05	*****	14.17	****	3.78	**	7.64	•••	
0-0.5 0.6-1 over 1	manganese		4.26	****	4.43	****	0.65	***	0.20	•	
0 - 1 1 - 1.5 over 1.5	zinc		1.72	****	1.25	***	0.36	•	0.17	:	
$0 - 0.2 \ 0.3 - 0.5 \ \text{over } 1$	copper		0.86		0.77	•	0.47	••	0.13	•	
ratio of calcium to magnesium	calcium		479.85	****	459.52	****	417.08	****	243.15	•••	
needs to be more than 2 or 3	magnesium		351.85	*****	562.26	*****	830.99	*****	273.95	*****	
should be less than potassium	sodium		195.30	***	478.71	*****	1,274.77	*****	592.21	*****	
	sulfur		8.02	•	14.48	•	79.52	••	29.08	**	
	molybdenum		0.06	***	0.06	***	0.06	***	0.01	**	
	nickel		0.89	•	1.44	**	0.18	•	0.04	•	
The following trace	aluminum		n d	•	n d	•	n d	•	n d	•	
elements may be toxic	arsenic		0.16	•	0.17	•	0.02	•	0.02	:	
The degree of toxicity	barium		3.08		1.23		0.20		0.03	•	
the sell sell texture	chromium		0.12		0.10		0.03	•	n d	•	
organic matter, and the	cobalt		0.04	•	0.02	•	0.04	•	0.04	•	
concentrations of the	lead		2.75	**	1.55	••	0.51	•	0.14	•	
individual elements as	lithium		0.25	•	0.25	•	0.24	•	0.15	•	
well as to their interactions.	mercury		n d	•	n d	•	nd	•	nd	•	
	selenium		n d	•	0.19	•	0.41	•	0.03	•	
The pH optimum depends	silver		n d	•	n d	•	nd	•	n d	•	
upon soil organic	strontium		3.55	•	3.43	•	3.51	•	2.17	•	
matter and clay content-	tin		n d	•	nd	•	nd	•	n d	:	
for clay and loain soils:	vanadium	ļ	0.10	•	0.12	•	0.00	•	0.22	-	
ander 5.2 is too actuic	Saturation Extra		l I								
0.5 to 7 is fucal	oH value		696		6.50	***	6.62	***	6.68	***	
The ECe is a measure of	FCe (milli-		0.80	**	0.50	***	6.72	*****	4.65	*****	
the soil salinity:	mho/cm)		0.71	milliea/l	0,81	milliea/l	0.72	millieg/1		millie	eq/l
i-2 affects a few plants	calcium	1	13.3	0.7	10.8	0.5	81.9	4.1	41.5	2	2.1
2-4 affects some plants.	magnesium		18.1	1.5	14.1	1.2	115.3	9.5	65.9	5	5.5
> 4 affects many plants.	sodium		112.2	4.9	138.1	6.0	1,004.0	43.7	726.8	31	.6
	potassium		13.2	0.3	6.9	0.2	2.6	0.1	4.8	0).1
	cation sum			7.4		7.9		57.3		39	1.2
problems over 150 ppm	chloride		116	3.3	143	4.0	2,375	66.9	1,662	46	3.8 5.7
	nitrate as N		3	0.2	3	0.2	15	1.1	10	0)./) ()
terris even 800	phosphorus as P		1.0	0.0	0.6	0.0	139.6	8.7	73.1	4	16
toxic over 800	suitate as 5		20.1		24.2	5.8	159.0	76.8	,5.1	52	2.1
toxic over 1 for many plants	boron as B		0.09	•	0.11	*	0.22	**	0.07	•	
increasing problems start at 6	SAR	1	4.7	***	6.5	****	16.8	*****	16.3	*****	
est. gypsum requirement-lbs./	1,000 square feet	1	34		84		221		101		
infiltratio	on rate inches/hour		very slow	,	very slow	,	slow	,	slow/fair		
soil text	ure		sandy loam	gravel > 2 mm	sandy clay loam	gravel > 2 mm	loam	gravel > 2 mm	sand	gravel > 2 m	ım
sand	ł		56.5%	0.0%	50.7%	0.0%	41.7%	2.5%a	90.6%	0.0%	
sil	1		28.8%	•	26.4%)	36.8%	•	5.2%		
clay	í		14.7%	•	22.8%	•	21.6%	,	4.2%	,	
lime (cal	leium carbonate)		nc		no		0.01494		0.000%		
Total nit	rogen anie earber		0.051%		0.032%		0.161%		0.022%	2	
earbourg	itrogen ratio		11.2		10.9)	11.3		NA		
organic	matter based on car	bon	1.13%		1.14%		0.32%	,	0.04%	J	
moisture	content of soil		14.4%		16.2%)	14.4%		4.1%)	
half satu	ration percentage		16.3%		25.4%	b	27.1%		18.4%		

pH and ECe are measured in a saturation paste/extract. nd means not detected. Sand, silt, clay and mineral content based on fraction passing a 2 mm screen.

WALLACE LABS	SOILS REPORT	Г	Print Date	Mar. 14, 2009	Receive Date	3-12-09				
365 Coral Circle	Location		Newport Beach	City Hall & Park,	Project No. 60218	84-002				
El Segundo, CA 90245	Requester		Vivian Cheng, I	eighton Consultin	g Inc.					
(310) 615-0116	graphic interpretation: *	verv low.	** low. *** modera	te	0					
ammonium bicarbonate/I		,	**** high ***	•• • • vary bigh						
extractable - mg/kg soil	Samule ID	Number	09-72-13	very nign	09-72-14		09-72-15		09-72-16	
Interpretation of data	Sample ib	Number	NB-2 15		NB-2 22.5'		NB-2 30		NB-2 37.5'	
low medium high	elements			eraphic		graphic		graphic		graphic
0 - 7 8-15 over 15	phosphorus		13.91	****	1.82	*	1.79	•	0.94	*
0-60 60 -120 121-180	potassium		37.32	**	21.76	•	13.57	*	12.89	*
0-4 4-10 over 10	iron		7.77	***	1.98	•	1.94	•	3.35	**
0-0.5 0.6-1 over 1	manganese		0.71	***	0.29	•	0.52	**	0.20	*
0 - 1 - 1.5 over 1.5	zinc		0.51	**	0.22	•	1.09	***	0.11	•
0-0.2 0.3-0.5 over 0.5	copper		0.61	****	0.15	*	4.11	****	0.11	*
0-0.2 0.2-0.5 over 1	boron		0.02	*	0.03	•	0.01	*	0.05	*
ratio of calcium to magnesium	calcium		463.69	****	152.22	**	97.55	*	34.59	**
needs to be more than 2 or 3	magnesium		1,001.22	****	361.81	*****	240.63	*****	237.21	****
should be less than potassium	sodium		1,027.71	*****	3/2.91		237.70		230.40	•
	molybdenum		0.18	****	23.88	***	0.04	***	0.05	***
	nickel		0.18	•	0.11	•	n d	*	0.02	*
The following trace	aluminum		n d	•	nd	•	n d	*	nd	*
elements may be toxic	arsenic		0.02	•	nd	•	0.02	*	n d	*
The degree of toxicity	barium		0.09	*	0.07	•	0.09	*	0.08	*
depends upon the pH of	cadmium		0.10	*	0.77	•	0.04	*	10.0	•
the soil, soil texture,	chromium		nd	*	n d	*	n d	*	0.01	•
organic matter, and the	cobalt		0.06	•	0.02	٠	0.04	•	0.01	•
concentrations of the	lead		0.26	*	0.09	•	0.38	•	0.03	•
individual elements as	lithium		0.29	*	0.12	*	0.06	*	0.08	*
well as to their interactions.	mercury		nd	•	nd	•	nd	•	nd	:
The pH optimum depends	selenium		0.19		0.11	•	n a na		n a n d	
upon soil organic	strontium		131	•	134	•	0.76	*	0.64	
matter and clay content-	tin		4.31 nd	•	n d		n d	*	n d	•
for clay and loam soils:	vanadium		0.31	•	0.18	•	0.04	•	0.03	•
under 5.2 is too acidic			0.51		0110					
6.5 to 7 is ideal	Saturation Extract									
over 9 is too alkaline	pH value		5.78	**	6.78	***	7.39	***	7.60	****
The ECe is a measure of	ECe (milli-		7.08	****	3.78	****	3.63	****	3.69	****
the soil salinity:	mho/cm)			millieq/l		millieq/l		millieq/l		millieq/1
1-2 affects a few plants	calcium		84.5	4.2	35.7	1.8	35.3	1.8	51.0	2.5
2-4 affects some plants,	magnesium		183.3	15.1	83.4	6.9	92.0	7.6	98.4	8.1
>4 affects many plants.	sodium		973.3	42.3	561.0	24.4	531.6	23.1	474.4	20.6
	potassium		3.8	0.1	4.8	0.1	4.8	0.1	4.8	0.1
	cation sum			61.8		33.2		32.6	1 224	31.4
problems over 150 ppm	chloride		2,670	75.2	1,346	37.9	615,1	37.0	1,324	37.3
	nurate as N		10	1.1	9	0.7		0.0	03	0.7
toxic over 800	sulfate as S		105.6	0.0	57.0	3.6	44.6	2.8	42.5	2.7
toxic over 800	anion sum		105.0	83.0	57.0	42.2		40.4		40.6
toxic over 1 for many plants	boron as B		0.08	*	0.07	*	0.03	*	0.01	*
increasing problems start at 6	SAR		13.6	****	11.7	****	10.7	****	8.9	****
est. gypsum requirement-lbs./	1,000 square feet		180		64		44		44	
infilmati	on rate inches/hour		fair/slow	,	fair/slow		fair		fair	
soil text	ure		sandy loam	gravel > 2 mm	loamy sand	gravel > 2 mm	sand	gravel > 2 mm	sand	gravel > 2 mm
sanc	1		66.3%	3.2%	86.5%	3.0%	90.5%	0.0%	89.6%	0.5%
sil	t		17.7%		8.1%		7.0%		7.4%	
clay	Ý		16.0%		5.5%		2.5%		3.0%	
lime (ca	icium carbonate)		no		no		no		n0 0.0000/	
Total nit	rogen		0.010%		0.003%		0.000%		0.000%	
I otal org	game carpon		0.035%		0.041%		U.403%		0.557% NA	
carbon:r	nuogen ratio natter based on carbo	n	3.4 0.07%		0.08%		0.93%		1.07%	
noisture	content of soil		12 3%		4.2%		3.1%		4.0%	
half satu	ration percentage		23.7%		16.5%		14.5%		15.2%	

pH and ECe are measured in a saturation paste/extract. nd means not detected.

WALLACE LABS	SOILS REPO	RT	Print Date	Mar. 14, 2009	Receive Date	3-12-09					
365 Coral Circle	Location		Newport Beach	City Hall & Park,	Project No. 6021	84-002					
El Segundo, CA 90245	Requester		Vivian Cheng, I	eighton Consultir	ng Inc.						
(310) 615-0116	graphic interpretation	n: * verv low.	** low. *** modera	ite	8						
ammonium bicarbonate/)ΤΡΔ	1	****	• •							
extractable - mg/kg soil	Samul	a ID Number	09-72-17	very nign	09.72.19		09.72.10		09.72.20		
Interpretation of data	Janp		NB-3 6"		NB-3 18"		NB-3 3		NB-3 7.5	,	
low medium high	elements	1		graphic		graphic		graphic		graphic	
0 - 7 8-15 over 15	phosphorus	1	2.06	*	1.58	•	1.51	*	3.50	**	
0-60 60 -120 121-180	potassium		87.67	•••	36.73	••	24.34	•	18,89	•	
0-4 4-10 over 10	iron		13.15	****	3.59	••	3.08	**	2.73	••	
0-0.5 0.6-1 over 1	manganese		4.90	****	1.49	****	0.47	**	0.17	•	
0 - 1 1 - 1.5 over 1.5	zine		1.13	***	0.31	•	0.27	•	0.20	*	
0-0.2 0.3-0.5 over 0.5	copper		0.93	****	0.50	****	0.31	***	0.22	**	
0-0.2 0.2-0.5 over 1	boron	-	0.02	•	0.27	***	0.13	**	0,06	•	
ratio of calcium to magnesium	calcium		393.57	***	375.00	***	304.77	***	314.72	***	
needs to be more than 2 or 3	magnesium		491.42	*****	642.69	*****	563.15	****	588.99	*****	
should be less than potassium	socium		258.77	••••	906.82	•••••	801.33	•••••	981.27		
	sutur		9.17		68.74		66.61		08.39		
1	nickel		0.07	•	0.04	•	0.01	•	0.28	•	
The following trace	aluminum	1	n d	•	0.27		n d		n d	•	
elements may be toxic	arsenic		0.11	•	0.06	*	0.04	•	0.02		
The degree of toxicity	barium		1.60	•	0.40	•	0.59	•	0.07	*	
depends upon the pH of	cadmium	ļ	0.12	•	0.08	•	0.07	•	0.05	•	
the soil, soil texture,	chromium		0.02	•	n d	•	n d	•	nd	•	
organic matter, and the	cobait		0.08	•	0.03	•	0.04	•	0.02	•	
concentrations of the	lead		1.15	**	0.39	•	0.50	•	0.25	•	
individual elements as	lithium		0.21	•	0.22	•	0.17	•	0.20	•	
well as to their interactions.	mercury		nd	•	n d	•	n d	•	n d	•	
The H and some dama de	selenium		nd	•	0.19	•	nd	•	0.22	•	
The pH optimum depends	silver		nd	•	nd	•	n d	•	n d	:	
upon son organic	strontium		2.78		2.95	:	2.92		2.87		
for clay and loam soils:	vanadium				n a 0.68	•	n a 0.66	•	0.41	*	
under 5.2 is too acidic	Fallaututi	1	0.20		0.08		0.00		0.41		
6.5 to 7 is ideal	Saturation Extra	act	þ								
over 9 is too alkaline	pH value		7.30	***	7.24	•••	7.09	***	6.68	•••	
The ECe is a measure of	ECe (milli-	1	0.72	••	3 72	****	5.30	*****	7.74		
the soil salinity:	mho/cm)		0.72	milliea/l	5.72	millieg/l	2.00	millieg/l			millieq/l
1-2 affects a few plants	calcium	5	10.5	0.5	39.5	2.0	66.9	3.3	108.6		5.4
2-4 affects some plants,	magnesium		12.9	1.1	47.0	3.9	86.0	7.1	156.1		12.9
> 4 affects many plants.	sodium		116.0	5.0	614.4	26.7	808.4	35.1	1,111.0		48.3
	potassium		5.1	0.1	4.0	0.1	1.6	0.0	4.3		0.1
	cation sum			6.8		32.7		45.6			66.7
problems over 150 ppm	chloride		118	3.3	1,190	33.5	1,732	48.8	2,754		77.6
	nitrate as N		3	0.2	10	0.7	13	0.9	19		1.3
torio quer 800	phosphorus as P		0.1	0.0	0.2	0.0	0.4	0.0	0.7		0.0
loxic over 800	suitate as 5		20.9	1.3	105.5		1 131.2	50.2	147.9		9.2
toxic over 1 for many plants	boron as B		0.04	•	0.38	++	0.22	**	0.17		00.2
increasing problems start at 6	SAR	1	5.7	***	15.6	*****	15.4	****	16.0	*****	
est. gypsum requirement-lbs.//	1,000 square feet	1	46		157		139		169		
infiltratio	on rate inches/hour		very slow		slow		slow	,	slow		
soil textu	ire		loamy sand	gravel > 2 mm	sandy clay loam	gravel > 2 mm	sandy loam	gravel > 2 mm	sandy loam	gravel >	> 2 mm
sand			85.5%	1.3%	58.0%	5.8%	54.4%	2.3%	63.8%	2.4	4%
silt			2.8%		17.2%		31.7%	5	20.5%	,	
clay			11.6%		24.8%		13.9%	5	15.8%	1	
lime (cal	cium carbonate)		no		no		no	•	no		
Total niti	rogen		0.057%		0.017%		0.009%	3	0.000%		
Total org	ame carbon		0.648%		0.170%		0.085%	1	0.036%		
carbon:n	urugen ratio	bon	11.4		10.1		9.4		NA 0.07%		
organie n	content of soil	DOIL	11.30%		10.54%		Q 60/		9.7%		
half satur	ation percentage		18.6%		27.4%		20.0%		18.7%	,	

pH and ECe are measured in a saturation paste/extract. nd means not detected.

WALLACELADS	SOIL S DEDOI	ЭT					2 12 00			
WALLACE LABS	SOILS KEPU	K I	Print Date	Mar. I	4, 2009	Receive Date	3-12-09			
365 Coral Circle	Location		Newport Beach	City Hall	& Park,	Project No. 6021	84-002			
El Segundo, CA 90245	Requester		Vivian Cheng, L	eighton C	Consultin	g Inc.				
(310) 615-0116	graphic interpretation:	• very low,	** low, *** moderate	•						
ammonium bicarbonate/I	ОТРА		• • • • high, • • • •	• very high	h					
extractable - mg/kg soil	Sample	ID Number	09-72-21			09-72-22		09-72-23		
Interpretation of data			NB-3 15'			NB-3 22.5	,	NB-3 37.5		
low medium high	elements			graphic			graphic		graphic	
0 - 7 8-15 over 15	phosphorus		2.99	•		6.49	••	1.74	•	
0-60 60 -120 121-180	potassium		14.02	•		43.89	••	16.19	•	
0-4 4-10 over 10	iron		1.69	•		3.58	••	4.80	***	
0-0.5 0.6-1 over 1	manganese		0.26	•		0.28	•	0.32	••	
0 - 1 1 - 1.5 over 1.5	zinc		0.11	•		2.04	****	0.54	••	
0-0.2 0.3-0.5 over 0.5	copper		0.12	•		0.53	****	0.11	•	
0-0.2 0.2-0.5 over 1	boron		nd	•		0.07	•	0.04	•	
ratio of calcium to magnesium	calcium		254.37	•••		289.45	•••	190.71	***	
needs to be more than 2 or 3	magnesium		392.99	****		920.32	****	201.89	•••••	
should be less than potassium	sodium		472.40	*****		1,034.84	*****	258.06	••••	
	sulfur		28.17	**		80.33	••	25.46		
	molybdenum		0.10			0.34	••••	0.17		
	nickel		0.09	:		0.07	:	0.04		
The following trace						nd		nd		
The degree of toxicity	harium		0.02			0.10	•	0.17		
depends upon the pH of	cadmium		0.10			1 35	••	0.12	•	
the soil soil texture	chromium		n d	•		n.d	•	0.02	•	
organic matter, and the	cobalt		0.02	•		0.03	•	0.03	•	
concentrations of the	lead		0.05	•		0.12	•	0.05	•	
individual elements as	lithium		0.15	•		0.18	•	0.10	٠	
well as to their interactions.	mercury		nd	•		nd	*	nd	•	
	selenium		0.01	•		0.29	•	n d	•	
The pH optimmm depends	silver		nd	•		nd	•	n d	٠	
upon soil organic	strontium		1.76	•		1.66	•	0.57	•	
matter and clay content-	tin		nd	•		n d	•	n d	•	
for clay and loam soils:	vanadium		0.27	•		0.26	•	0.05	•	
under 5.2 is too acidic			ļ							
6.5 to 7 is ideal	Saturation Extra	ct								
over 9 is too alkaline	pH value		6.92	***		6.97	•••	7.66	****	
The ECe is a measure of	ECe (milli-		3.80	****		7.80	*****	3.57	****	
the soil salinity:	mho/cm)				millieq/l		millieq/	1		millieq/
1-2 affects a few plants	calcium		50.4		2.5	134.3	6.7	78.5		3.9
2-4 affects some plants,	magnesium		66.0		5.5	217.4	18.0	97.9		8.1
>4 affects many plants.	sodium		591.4		25.7	1,000.5	43.5	482.5		21.0
	potassium		1.9		0.0	3.4	0.1	5.7		0.1
	cation sum				33.7		68.3			33.1
problems over 150 ppm	chloride		1,221		34.4	2,478	69.8	1,150		32,4
	nitrate as N		10		0.7	22	1.6	9		0.6
tarda autor 800	phosphorus as P		0.6		0.0	0.6	0.0	50.0		3.7
toxic over 800	suitate as S		66.7		4.2	[23.5	70.1	39.9		36.8
taxic over 1 for many plants	boron as B		0.01		39.3	0.02	*	0.06		50.0
increasing problems start at 6	SAR SAR		12.9	*****		12.4	*****	8.6	****	
est gypsum requirement-lbs /	1 000 scupare feet		81			181		44		
infiltratio	n rote inches/hour		slow/fair			slow/fair		fair		
soil textu	on rate menes/nour		siowrian	gravel	> 2 mm	sandy loan	gravel > 2 mm	loamy sand	gravel	> 2 mm
sand			88.5%	0.1	7%	66.3%	0.9%	84.5%	0.	.0%
silt			4.8%	5.		19.4%)	12.6%		
clay			6.7%			14,3%		2.9%		
line (cale	cium carbonate)		10			nc)	no		
Total niti	rogen		0.004%			0.006%	5	0.017%	,	
Total org	anic carbon		0.014%			0.313%		0.159%		
carbon:n	itrogen ratio		3.6			51.9)	9.3		
organic n	natter based on carb	on	0.03%			0.63%		0.32%		
moisture	content of soil		4.7%			14.6%		3.6%		
half satu	ration percentage		16.0%			28.9%	5	15.4%	,	

pH and ECe are measured in a saturation paste/extract. nd means not detected. Sand, silt, clay and mineral content based on fraction passing a 2 mm screen.

WALLACE LABS	SOILS REPORT	Print Date	March 16, 2009	Receive Date	3-12-09				
365 Coral Circle	Location	Newport Beach C	ity Hall & Park, Pr	oject No. 602184	-002				
El Segundo, CA 90245	Requester	Vivian Cheng, Le	ighton Consulting	Inc.					
(310) 615-0116	graphic interpretation: * very low	** low, *** moderate	0						
ammonium bicarbonate/I	TPA	****high *****	very high						
extractable - mg/kg soil	Sample ID Numbe	09-75-01	tory mgn	09-75-02		09-75-03		09-75-04	
Interpretation of data		NB-4 0.5'		NB-4 1.5		NB-4 3		NB-4 7.5	
low medium high	elements		graphic		graphic		graphic		graphic
0 - 7 8-15 over 15	phosphorus	2.30	*	0.85	•	0.75	•	1.86	•
0-60 60 -120 121-180	potassium	89.28	•••	43.86	**	30.62	••	36.08	••
0-4 4-10 over 10	iron	5.09	•••	2.70	••	1.33	•	1.49	*
0-0.5 0.6-1 over 1	manganese	0.97	***	0.25	•	0.23	•	0.61	••••
0 - 1 - 1.5 over 0.5	zinc	1.97		0.08			:	0.54	
0-0.2 0.3-0.5 over 1	boron	0.11	**	0.23	••	0.10	••	0.07	•
ratio of calcium to magnesium	calcium	418.02	****	433.40	****	449.35	••••	407.19	****
needs to be more than 2 or 3	magnesium	285.60	*****	241.36	*****	384.43	•••••	660.33	•••••
should be less than potassium	sodium	49.04	•	54.95	••	124.69	***	294.16	****
	sulfur	7.74	•	4.37	•	8.19	•	8.35	*
1	inolybdenum	0.02	**	n d	•	0.05	***	0.07	***
The fellowing to a	nickel	0.48	•	0.11	•	0.06		0.10	
elements may be toxic	arsenic	n d 0.06		0.03	•	n d	•	0.05	•
The degree of toxicity	barium	2.28	•	2.90	•	5.02		1.65	•
depends upon the pH of	cadmium	0.47	•	0.05	•	0.02	•	0.77	•
the soll, soll texture,	chromium	n d	•	n d	*	nd	•	nd	*
organic matter, and the	cobalt	0.06	•	0.03	•	0.05	•	0.05	•
concentrations of the	lead	1.41	••	0.13	•	nd	•	0.56	•
individual elements as	lithium	0.21	•	0.22	•	0.23		0.20	•
well as to their interactions.	solonium	nd		nd	:	n d		nd nd	-
The pH optimum depends	silver	nd nd	•	nd	•	nd	•	nd	•
upon soil organic	strontium	1.52	•	3.06	•	5.37	••	4.16	•
matter and clay content-	tin	n d	•	n d	•	nd	•	nd	•
for clay and loam soils:	vanadium	0.26	•	0.20	•	0.24	•	0.35	•
under 5.2 is too acidic		1							
6.5 to 7 is ideal	Saturation Extract	ļ							
over 9 is too alkaline	pH value	7.09	***	7.76	****	8.00	****	7.92	****
The ECe is a measure of	ECe (milli-	0.40	••	0.30	•	0.42	**	0.50	**
the soil samily:	mno/cm)		millieq/l	10.7	millieq/1	10.2	mined/i	74	numeq/1
2-4 affects some plants	magnosium	23.5	1.2	13.7	0.7	10.3	0.5	4.5	0.4
> 4 affects many plants.	sodium	36.4	1.6	37.8	1.6	68.5	3.0	93.8	4.1
	potassium	6.0	0.2	3.4	0.1	2.2	0.1	1.8	0.0
	cation sum		3.8		3.0		4.1		4.9
problems over 150 ppm	chloride	8	0.2	5	0.1	16	0.4	29	0.8
	nitrate as N	4	0.3	1	0.1	3	0.2	3	0.2
to 1 - 000	phosphorus as P	0.1	0.0	0.0	0.0	0.0	0.0	0.3	0.0
toxic over 800	suitate as 5	16.1	1.0	10.4	0.7	19.4		22.0	2.4
toxic over t for many plants	horon as R	0.08	*	0.09	*	0.11	•	0.20	•
increasing problems start at 6	SAR	1.6	**	2.1	**	4.1	***	6.7	****
est. gypsum requirement-lbs./	1,000 square feet	9		9		22		53	
infiltrațio	n rate inches/hour	slow/fair		slow	1	slow	· (slow	
soil textu	re	sandy loam	gravel > 2 mm	loamy sand	gravel > 2 mm	loamy sand	gravel > 2 mm	sandy loam	gravel > 2 mm
sand		77.2%	12.8%	78.1%	0.2%	84.0%	2.5%	77.0%	7.4%
silt		12.6%		14.9%	,	13.0%		16.0%	
clay line (cal	rium carbonate)	10.2%		7.0%		5.0%		7.0% no	
Total niti	ogen	0.121%		0.024%		0.014%		0.000%	
Total org	anic carbon	0.939%		0.172%		0.054%		0.036%	
carbon:n	itrogen ratio	7.8		7.3		3.8		NA	
organic n	atter based on carbon	1.88%		0.34%	•	0.11%		0.07%	
moisture	content of soil	7.5%		8.4%	•	12.6%		12.7%	
half satur	ation percentage	19.6%		15.5%)	19.7%		21.9%	

pH and ECe are measured in a saturation paste/extract, nd means not detected.

WALLACE LABS	SOILS REPORT	Print Date	March 16, 2009	Receive Date	3-12-09				
365 Coral Circle	Location	Newport Beach C	ity Hall & Park, Pr	oject No. 602184	-006				
El Segundo, CA 90245	Requester	Vivian Cheng, Le	ighton Consulting I	nc.					
(310) 615-0116	graphic interpretation: * very low,	** low, *** moderate							
ammonium bicarbonate/I	OTPA	* * * * high. * * * * *	very high						
extractable - mg/kg soil	Sample ID Number	09-75-05		09-75-06		09-75-07		09-75-08	
Interpretation of data		NB-4 15'		NB-4 22.5		NB-4 30'		NB-4 37.5'	
low medium high	elements		graphic		graphic		graphic		graphic
0 - 7 8-15 over 15	phosphorus	3.74	••	2.07	•	1.11	•	3.91	**
0-60 60 -120 121-180	potassium	49.52	**	30.40	••	28.77	•	21.46	•
0 - 4 4 - 10 over 10	iron	13.62	****	3.10	••	2.01	•	10.06	••••
0-0.5 0.6-1 over 1	manganese	10.54	****	0.21	•	3.02		4,99	
0-1 1-1.5 over 1.5	zinc	0.20		n d 0.20		0.07	****	1.65	****
0-0.2 0.3-0.5 over 1	boron	0.71	••	0.20	•	0.12	**	0,16	••
ratio of calcium to magnesium	calcium	412.46	****	453.58	****	446.07	****	478.21	****
needs to be more than 2 or 3	magnesium	419.28		494.57	*****	519.75	*****	303.99	****
should be less than potassium	sodium	210.54	••••	241.53	****	286.70	****	149.10	•••
	sulfur	12.20	•	10.52	•	33.01	••	17.16	•
	molybdenum	0.05	•••	n d	•	nd	•	nd	•
	nickel	0.28	•	0.03	*	0.25	•	0.22	•
The following trace	aluminum	n d	•	nd	•	n d	:	nd	
elements may be toxic	arsenic	0.07	:	0.03		0.01	•	1.35	•
depends upon the pH of	cadmium	2.71	•	0.93		0.16	•	0.14	•
the soil soil texture.	chromium	0.04	•	n d	•	nd	•	0.05	•
organic matter, and the	cobalt	0.14	•	0.04	•	0.08	•	0.11	•
concentrations of the	lead	0.17	•	0.06	•	0.08	•	0.04	•
individual elements as	lithium	0.21	•	0.23	•	0.22	•	0.23	•
well as to their interactions.	mercury	n d	•	n d	•	nd	•	nd	•
	selenium	nd	•	nd	•	nd	•	n d	:
The pH optimum depends	silver	nd	•	n d	•	nd 3.75	:	n a 177	
upon soil organic	strontium	4.32	:	4.39		3.75 nd	•	т.//	•
for clay and loam soils:	vanadium	0.64	•	0.24	•	0.54	•	0.23	•
under 5.2 is too acidic		0.04		0.24		0.01			
6.5 to 7 is ideal	Saturation Extract	1							
over 9 is too alkaline	pH value	8.05	****	7.87	****	8.02	••••	8.76	****
The ECe is a measure of	ECe (milli-	0.48	••	0.65	••	1.00	***	0.84	***
the soil salinity:	mho/cm)		millieq/l		millieq/l		millieq/l		millieq/1
1-2 affects a few plants	calcium	7.4	0.4	9.5	0.5	20.6	1.0	21.6	1.1
2-4 affects some plants,	magnesium	4.9	0.4	5.7	0.5	15.3	1.3	15.9	1.3
>4 affects many plants.	sodium	87.4	3.8	114.5	5.0	159.9	7.0	136.7	5.9
	potassium	3,4	0.1	5.6	0.1	3.5	0.1	3.9	0.1
150	cation sum		4.7	74	6.1	123	9.3	84	8.4 2.4
problems over 150 ppm	chioride		0.5	/4	2.1	2	0.1	2	0.1
	nhosphorus as P	02	0.1	4	0.0	0.0	0.0	0.1	0.0
to xic o ver 800	sulfate as S	27.6	1.7	25.3	1.6	62.1	3.9	41.0	2.6
	anion sum		2.3		4.0	1	7.5	1	5.1
toxic over 1 for many plants	boron as B	0.15	•	0.17	•	0.18	•	0.15	•
increasing problems start at 6	SAR	6.1	****	7.3	****	6.5	****	5.4	***
est. gypsum requirement-lbs./	1,000 square feet	37		43		51		26	
infiltratio	on rate inches/hour	slow		slow		slow/fair		fair/slow	
soil textu	ire	loamy sand	gravel > 2 mm	sandy loan	gravel > 2 mm	loamy sand	gravel > 2 mm	sandy loam	gravel > 2 nun
sand		82.0%	5.3%	78.3%	8./%	82.8%	0.7%	NA NA	1975
Sili		8.5%		10.7%		6.8%		NA	
lime (ca)	cium carbonate)	9.3%		11.0%	1	no		ves	
Total nit	rogen	0.034%		0.026%		0.036%		0.032%	
Total org	anic carbon	0.118%		0.059%		0.092%		0.362%	
carbon:n	itrogen ratio	3.4		2.3		2.6		11.4	
organic (natter based on carbon	0.24%		0.12%	•	0.18%		0.72%	
moisture	content of soil	12.8%		11.8%		16.5%	1	8.8%	
half satu	ration percentage	25.3%		24.0%		26.9%		19.0%	

pH and ECe are measured in a saturation paste/extract. nd means not detected.

WALLACE LABS	SOILS REPOI	RT	Print Date	March 16, 2009	Receive Date	e 3-12-09				
365 Coral Circle	Location		Mewport Beach City Hal	& Park, Project N	0.602184-010					
El Segundo, CA 90245	Requester		Vivian Cheng Leighton	Consulting Inc.	0.002101010					
(310) 615-0116	graphic interpretation:	• very low	** low *** moderate	consulting life.						
ammonium hicarbonate/I		very iou,	iow, inductate							
extractable - mg/kg soil	Samle	ID Number	09.75-00	<u>zn</u>	00.75.10		09-75-1		09-75-12	
Interpretation of data	Sample		NB-60.5		NB-61.5	,	NB-6.3		NB-6 7.5	(
low medium high	elements			graphic	10-01.0	graphic	10-05	graphic	112-0110	graphic
0-7 8-15 over 15	phosphorus		3.20	••	2.95	•	3.68	**	2.09	•
0-60 60 -120 [21-180	potassium		108.36	•••	101.48	***	124.02	••••	60.28	
0-4 4-10 over10	iron		1.64	•	1.60	•	1.47	•	15.90	*****
0-0.5 0.6-1 over 1	manganese		0.42	••	0.33	••	0.24	•	5.45	••••
0 - 1 1 - 1.5 over 1.5	zinc		1.33	•••	1.34	***	1.06	***	0.28	•
0-0.2 0.3-0.5 over 0.5	copper		1.51	****	1.45	****	2.29	****	1.06	****
0-0.2_0.2-0.5_over 1	boron		0.13	••	0.14	**	0.23	***	0.15	**
ratio of calcium to magnesium	calcium		413.06	****	410.09	••••	372.23	•••	267.14	•••
needs to be more than 2 or 3	magnesium		982.89	•••••	1,006.40		1,256.47		483.20	
should be less than potassium	southin		285.31		319.95		1,097.87		310.13	
	molybdenym		10.18		0.10	***	1.70		21.30	
	nickel		0.07	•	0.10	•	0.12	•	0.30	•
The following trace	aluminum		0.55 n.d	•	0.50 n d	•	n d	•	n d	•
elements may be toxic	arsenic		0.04		0.11	•	nd	•	0.01	•
The degree of toxicity	barium		1.37	•	1.43	•	0.78	•	0.53	•]
depends upon the pH of	cadmium		1.40	**	1.60	••	1.14	**	0.24	•
the soil, soil texture,	chromíum		n d	•	u d	•	nd	•	0.02	•
organic matter, and the	cobalt		0.07	•	0.03	•	0.05	•	0.05	•
concentrations of the	lead		0.47	•	0.53	•	0.39	•	0.18	•
individual elements as	lithium		0.21	•	0.22	•	0.21	•	0.15	•
well as to their interactions.	mercury		nd	•	n d	•	nd	•	nd	•
The pH optionum depends	scientum		n d	:	nd	:	0.13	:	0.16	.
The pri optimum depends	strontium		n d		nd 215	:	n d 256		n a 1 34	:
matter and clay content-	tin		2.09	•	2.15 nd	•	2.50	•	1.54 n.d	
for clay and loam soils:	vanadium		0.53		0.52		0.53	•	0.39	•
under 5.2 is too acidic			0.55		0.52		0.00		••••	
6.5 to 7 is ideal	Saturation Extra	ct								
over 9 is too alkaline	pH value		7.91	••••	7.90	****	8.31	••••	8.60	••••
The ECe is a measure of	ECe (milli-		0.55	••	0.50	**	0.48	••	1.06	•••
the soil salinity:	mho/cm)			millieg/l		millieq/l		millieq/l		millieq/1
1-2 affects a few plants	calcium		23.2	1.2	20.7	1.0	5.7	0.3	23.2	1.2
2-4 affects some plants,	magnesium		14.4	1.2	10.4	0.9	3.6	0.3	15.8	1.3
> 4 affects many plants.	sodium		74.6	3.2	69.9	3.0	101.1	4.4	185.8	8.1
	potassium		2.8	0.1	2.1	0.1	2.1	0.1	2.6	0.1
	cation sum			5.7		5.0		5.0		10.6
problems over 150 ppm	chloride		45	1.3	21	0.6	2	0.1	101	2.8
	nitrate as N		4	0.3	4	0.3	2	0.1	2	0.2
toxic over 800	sulfate as S		0.3	0.0	20.9	0.0	15.9	0.0	55.0	3.4
toale over 500	anion sum		23.5		20.9	22	15.9	1.0	55.0	6.4
toxic over 1 for many plants	boron as B		0.08	*	0.10	*	0.30	**	0.12	•
increasing problems start at 6	SAR		3.0	••	3.1	***	8.2	****	7.3	••••
est. gypsum requirement-lbs./	1,000 square feet		54		60		194		56	
infiltratio	on rate inches/hour		slow/fair		slow/fair		slow		slow/fair	1
soit texts	re		gravelly sandy clay loam	gravel > 2 mm	gravelly sandy clay loam	gravel > 2 mm	gravelly loam	gravel > 2 mm	gravelly sandy loam	gravel > 2 mm
sand			49.9%	20.0%	46.8%	20.9%	43.9%	38.5%	62.4%	61.4%
silt			25.6%		26.5%		32.9%		22.4%	
clay			24.5%		26.6%		23.1%		15.2%	
lime (cal	cium carbonate)		low		low		low		yes	
Total niti	rogen		0.097%		0.103%		0.037%		0.033%	(
Total org	anic carbon		0.892%		0.865%		0.231%		0.190%	
carbon:n	nrogen ratio		9.2		8.4		6.2 0.469/)./ 0.30#/	
moisture	content of soil	1011	1./8%		1.75%		24 0%		6.9%	
half satu	ration percentage		31.0%		32.3%		42.4%		20.1%	

Elements are expressed as mg/kg dry soil or mg/l for saturation extract. pH and ECe are measured in a saturation pasle/extract. nd means not detected. Sand, slit, clay and mineral content based on fraction passing a 2 mm screen.

WALLACE LABS	SOILS REPOR	RT	Print Date	March 16, 2009	Receive Date	3-12-09				
365 Coral Circle	Location		Newport Beach City Hall	& Park, Project N	0.602184-014					
El Segundo, CA 90245	Requester		Vivian Cheny Leighton	Consulting Inc						
(210) 615-0116	Requester		vivian Cheng, Leighton v	Jonsunning me.						
(310) 013-0110	graphic interpretation:	very low,	tt low, ttt moderate							
ammonium bicarbonate/L	DTPA		**** high, ***** very hig	h					00.75.14	
extractable - mg/kg soil	Sample I	D Number	09-75-13		09-75-14		09-75-15		09-/5-16	
Interpretation of data			NB-6 15		NB-6 22.5		NB-0 30		ND-0 37.3	
low medium high	elements		_	graphic		graphic		graphic		grapnic
0-7 8-15 over 15	phosphorus		0.74	•	0.38	•	1.76	•	1.03	
0-60 60-120 121-180	potassium		141.84		150.52		230.18		240.72	•••
0-4 4-10 over10	iron		1.34		1.65		3.74		4.12	****
	alanganese		0.48		0.83	•	1.67		0.85	••
0-02 03-05 over 0.5	copner		2.18		2.24	••••	7.25	••••	4.85	•••••
0-0.2 0.3-0.5 over 1	boron		0.19	••	0.33	•••	0.18	••	0.30	•••
ratio of calcium to magnesium	calcium		396,90	•••	412.36		409.79	••••	309.38	•••
needs to be more than 2 or 3	magnesium		1,314.31	•••••	1,054.85	*****	1,538.95	••••	1,150.42	*****
should be less than potassium	sodium		738.12	•••••	626.35	*****	718.37	*****	803.83	*****
	sulfur		27.46	••	16.97	•	30.39	••	187.39	•••
	molybdenum		1.25	•••••	3.69	*****	2.11	•••••	4.23	•••••
	nickel		0.09	•	0.13	•	0.44	•	0.39	•
The following trace	aluminum		n d	•	nd	•	nd	•	nd	•
elements may be toxic	arsenic		0.06	•	nd	•	nd	•	0.05	:
The degree of toxicity	barium		0.72	•	0.26	:	0.29	:	0.12	
depends upon the pH of	cadmium		0.62	•	0.18	:	0.30		1.01	•
the soil, soil texture,	chromum		nd	:	na	:	0.02		0.08	•
organic matter, and the	coban		0.05	:	0.08	•	0.12		0.52	•
individual elements as	lithium		0.21		0.74	•	0.26	•	0.21	
well as to their interactions.	mercury		n d	•	n d	•	n d	•	n d	•
	selenium		0.03	•	0.12	•	0.15	•	0.27	•
The pH optimum depends	silver		n d	•	n d	•	n d	•	n d	•
upon soil organic	strontium		2.84	•	2.06	•	2.52	•	1.61	•
matter and clay content-	tin		n d	•	n d	•	nd	•	n d	•
for clay and loam soils:	vanadium		0.40	•	0.19	•	0.23	•	0.38	•
under 5.2 is too acidic]							
6.5 to 7 is ideal	Saturation Extrac	t								
over 9 is too alkaline	pH value		8.13	••••	8.15	****	8.12	****	7.90	****
The ECc is a measure of	ECe (milli-		1.21	***	0.62	••	0.71	••	1.76	•••
the soil salinity:	mho/cm)			millieq/l		millieq/l		millieq/1		millieq/t
1-2 affects a few plants	calcium		30.2	1.5	11.1	0.6	[4.]	0.7	74.8	3.7
2-4 affects some plants,	magnesium		22.6	1.9	6.2	0.5	8.8	0.7	40.8	3.4
> 4 affects many plants.	sodium		176.6	7.7	109.6	4.8	118.4	5.1	247.9	10.8
	potassium		3.0	0.1		0.1	4.3	67	04	18.1
oroblems over 150 ppp	chloride		247	11.1	55	5.9	62	17	133	3.8
problems over 150 ppm	cinoriae pirruto as N		247	0.9	33	0.1	2	0.1	2	0.2
	phosphorus as P		01	0.0	0.2	0.0	0.2	0.0	0.1	0.0
toxic over 800	sulfate as S		39.0	2.4	23.1	1.4	32.1	2.0	201.0	12.6
	anion sum			9.6		3.1	1	3.9		16.5
toxic over 1 for many plants	boron as B		0.16	•	0.22	**	0.19	•	0.25	**
increasing problems start at 6	SAR		5.9	***	6.5	****	6.1	****	5.7	***
est. gypsum requirement-lbs./	1,000 square feet		[34		113		132		143	
infiltratio	on rate inches/hour		slow/fair		slow	,	slow/fair		fair/slow	
soil text	ure		gravelly loam	gravel > 2 mm	gravelly loan	a gravel > 2 mm	clay loam	gravel > 2 mm	loam	gravel > 2 mm
sand	t		40.4%	46.5%	46.4%	28.7%	30.2%	14.8%	43.8%	4.5%
sil	t		36.8%		34.4%		34.1%		35.7%	,
clay	Y		22.8%		19.2%	D	35.7%		20.4%	
line (ca	leium carbonate)		yes		yes		yes		yes	
Total nit	rogen		0.079%		0.030%		0.056%		0.048%	
Total or	gante carbon		0.172%		0.105%		0.247%		3.8	
cardon:n	nurogen ratio	00	0.34%		0.21%		0.49%		0.37%	
organic i	content of soil	2011	76 39/		21.4%		24.7%		30.7%	
halfester	ration percentage		A3 20/		39 10/		49 3%		40.8%	

Elements are expressed as mg/kg dry soll or mg/l for saturation extract. pH and ECe are measured in a saturation paste/extract. nd means not detected. Sand, silt, clay and mineral content based on fraction passing a 2 mm screen.

WALLACELARS	SOUS DEBOI)T	1							
WALLACE LABS	SOILS REPOR	<u> </u>	Print Date	March 16, 2009	Receive Date	3-12-09				
365 Coral Circle	Location		Newport Beach City	Hall & Park, Projec	ct No. 602184-018					
El Segundo, CA 90245	Requester		Vivian Cheng, Leight	on Consulting Inc.						
(310) 615-0116	graphic interpretation:	 very low, 	** low, *** moderate							
ammonium bicarbonate/	DTPA		* * * * high, * * * * * very	high						
extractable - mg/kg soil	Sample	ID Number	09-75-17		09-75-18		09-75-19		09-75-20	
Interpretation of data			NB-7 0.5		NB-7 1.5	•	NB-7 3		NB-7 7.5'	
low medium high	elements			graphic		graphic		graphic		graphic
0-7 8-15 over 15	phosphorus		2.45	•	5.14	**	0.58	•	2.54	•
0-60 60 -120 121-180	potassium		86.05	•••	53.72	**	31.36	**	32.91	••
0-4 4-10 over 10	iron		20.92	*****	39.06	*****	3.00	**	2.35	•
0-0.5 0.6-1 over 1	manganese		1.84	****	4.60	****	1.00	***	0.28	•
0 - 1 1 - 1.5 over 1.5	zinc		0.41	•	n d	•	0.03	•	0.02	•
0-0.2 0.3-0.5 over 0.5	copper		0.62	****	0.52	****	0.45	***	0.35	•••
0-0.2 0.2-0.5 over 1	boron		0.06	•	0.03	•	0.43	•••	0.13	**
ratio of calcium to magnesium	calcium		378.49	***	288.10	***	334.27	•••	314.24	***
needs to be more than 2 or 3	magnesium		254.98	*****	147.97	****	722.54	*****	510.83	
should be less man potassium	soutum		65.79		161.83		955.67	**	900.38	
	molybdouum		0.44		4.28		32.80		54.90	
	nickel		0.02		n a 0.61		0.26	*	0.01	•
The following trace	aluminum		0.08 n.d	•	0.01		0.20 n.d		0.11 n.d	•
elements may be toxic	arsenic		0.14		0.13		0.07	•	nd	•
The degree of toxicity	barium		1.64	•	1.14	•	0.46	*	0.07	•
depends upon the pH of	cadmium		0.10	•	0.07	•	0.07		0.03	•
the soil, soil texture,	chromium		0.05	•	0.10	•	0.01	•	nd	•
organic matter, and the	cobalt		0.03	•	0.04	•	0.07	•	0.08	•
concentrations of the	lead		0.69	•	0.10	•	0.20	•	0.14	•
individual elements as	lithium		0.19	•	0.15	•	0.19	•	0.18	•
well as to their interactions.	mercury		nd	•	n d	•	nd	*	nd	•
	selenium		'nd	•	n d	*	0.18	•	0.01	•
The pH optimum depends	silver		nd	•	n d	•	nd	*	nd	•
upon soil organic	strontium		2.94	•	2.71	•	4.03	*	3.19	•
matter and clay content-	tin		nd	•	nd	•	nd	*	nd	•
for clay and loam soils:	vanadium		0,08	•	0.13	•	0.73	*	0.42	•
under 5.2 is too acidic			1							
6.5 to 7 is ideal	Saturation Extrac	<u>t</u>	_							
over 9 is too alkaline	pH value		6.78	•••	7.11	***	8.06	****	7.45	***
The ECe is a measure of	ECe (unilli-		0.31	*	0.55	**	1.75	***	5.43	*****
the soil salinity:	mbo/cm)			millieq/l		millieq/l		millieq/l		millieq/I
1-2 affects a few plants	calcium		9.4	0.5	8.3	0.4	15.1	0.8	60.9	3.0
2-4 affects some plants,	magnesium		5.5	0.5	5.0	0.4	10.0	0.8	65.1	5.4
>4 affects many plants.	Jsodium		47.2	2.1	91.8	4.0	318.0	13.8	828.2	36.0
	potassium		5.7	0.1	4.7		3.4	15.5	3.8	44.5
problems over 150 ppm	chloride		11	3.1	60	4.9	304	11.1	1.699	47.9
problems over 150 ppm	nitrate as N		5	0.3	3	1.7	394	0.3	1,000	0.7
	nhosphorus as P		01	0.0	01	0.0	0.2	0.0	0.5	0.0
toxic over 800	sulfate as S		93	0.0	17.3	t.I	53.4	3.3	112.8	7.1
	anion sum		5.5	1.2	11.5	3.0	1	14.7		55.6
toxic over 1 for many plants	boron as B		0.08	•	0.16	•	0.37	**	0.25	**
increasing problems start at 6	SAR		3.0	***	6.2	****	15.6	****	17.6	*****
est. gypsum requirement-lbs/	1,000 square feet		11		28		166		155	
infiltratio	on rate inches/hour		very slow		slow		slow		slow	
soil textu	ire		sandy loam	gravel > 2 mm	sandy clay loam	gravel > 2 mm	sandy clay loam	gravel > 2 mm	sandy loam	gravel > 2 mm
sand			64.2%	0.0%	66.3%	1.0%	54.2%	0.0%	69.8%	1.1%
silt			25.6%		27.1%		21.9%		19.3%	
clay			10.1%		6.6%		23,9%		10.8%	
lime (cal	cium carbonate)		no		no		no		no	
Total niti	rogen		0.073%		0.095%		0.031%		0.019%	
Total org	anic carbon		0.380%		0.357%		0.182%		0.069%	
carbou:n	itrogen ratio		5.2		3.8		5.8		3.6	
organic n	natter based on carb	011	0.76%		0.71%		0.36%		0.14%	
moisture	content of soil		9.7%		9.6%		9.5%		7.8%	
half satu	ration percentage		14.2%		15.9%		55.4%		20.6%	

Elements are expressed as mg/kg dry soil or mg/l for saturation extract. pH and ECe are measured in a saturation paste/extract. nd means not detected. Sand, silt, clay and mineral content based on fraction passing a 2 mm screen.

WALLACE LABS	SOILS REPOR	RT	Print Date	March 16, 2009	Receive Date	3-12-09				
365 Coral Circle	Location		Newport Beach City	Hall & Park. Proje	ct No. 602184-022					
El Segundo, CA 90245	Requester		Vivian Cheng Leight	on Consulting Inc.						
(310) 615-0116	graphic interpretation:	* very low	** low *** moderate	on consulting me.						
ammonium hicarhonate/		1019 1011,	**** high #*###	t.iL						
extractable - mg/kg soil	Saunle	ID Number	09-75-21	mga	09-75-22		09-75-23		09-75-24	
Interpretation of data	Sumple	ilo manoei	NB-7 15'		NB-7 22.5'		NB-7 30		NB-7 37.5'	ĺ
low medium high	elements			graphic		graphic		graphic		graphic
0-7 8-15 over 15	phosphorus		6.11	**	4.57	**	3.36	**	3.33	**
0-60 60 -120 121-180	potassium		23.59	*	23.60	•	35.69	••	32.95	**
0-4 4-10 over 10	iron		4.47	***	3.50	**	4.36	***	4.48	•••
0-0.5 0.6-1 over 1	manganese		0.29	•	0.56	**	3.00	****	1.37	****
0 - 1 1 - 1.5 over 1.5	zine		0.04	•	0.08	•	2.22	****	1.61	****
0-0.2 0.3-0.5 over 0.5	copper		0.28	**	0.74	****	12.21	*****	0.81	****
vatio of calcium to mamerium	onleium		0.07		0.08		0.15	***	201.50	***
needs to be more than 2 or 3	magnesium		375.40	*****	235.41 348.07	*****	562.00	*****	912.11	*****
should be less than potassium	sodium		613.41	*****	476.11	****	528.50	*****	568.13	*****
•	sulfur		35.90	••	30.77	**	69,61	**	115.46	**
	molybdenum		n d	•	n d	•	n d	•	0.54	****
	nickel		0.09	•	0.10	•	0.20	•	0.28	*
The following trace	aluminum		nd	*	nd	•	n d	•	nd	*
elements may be toxic	arsenie		0.02	•	0.02	•	0.02	*	0.57	••
The degree of toxicity	barium		n d	•	0.08	•	0.25	•	0.10	•
the soil soil texture	chromium		0.03		0.06		0.22	•	0.14	
organic matter, and the	cobalt		0.08	•	0.04	•	0.01	•	0.02	•
concentrations of the	lead		0.10	•	ью. ри	•	0.78	•	0.25	•
individual elements as	lithium		0.17	•	0.14	•	0.15	•	0.15	•
well as to their interactions.	mercury		nd	•	n d	•	n d	•	nd	•
	selenium		0.16	*	0.13	*	0.10	•	0.01	*
The pH optimum depends	silver		nd	•	n d	•	n d	•	nd	*
upon soil organic	strontium		2.33	•	1.66	•	1.20	*	0.78	•
for elay and loam soils:	run vanadium		nd		n d 0.20	:	n d 0.34	*	0.23	•
under 5.2 is too acidic	vanaoiatii		0.51		0.29		0.54		0.25	
6.5 to 7 is ideal	Saturation Extra	et	1							
over 9 is too alkaline	pH value		6.98	***	7.34	***	7.74	****	8.06	****
The ECe is a measure of	ECe (milli-		4.81	*****	4.70	****	6.51	*****	2.58	****
the soil salinity:	mho/cm)			millieq/l		millieq/l		millieq/l		millieq/l
I-2 affects a few plants	calcium		67.6	3.4	80.1	4.0	247.0	12.3	93.5	4.7
2-4 affects some plants,	magnesium		80.3	6.6	95.1	7.9	221.2	18.3	56.4	4.7
> 4 affects many plants.	∫sodium		729.7	31.7	671.3	29.2	747.8	32.5	339.2	14.7
	potassium		4.3	0.1	3.5		5.0		3.2	24.2
problems over 150 ppm	cation sum		1 538	41.8	1 477	41.1	2 1 2 9	60.0	481	13.6
problems over 100 ppm	nitrate as N		10	-9.5	9	0.7	17	1.2	5	0.3
	phosphorus as P		0.8	0.0	1.0	0.0	0.5	0.0	0.0	0.0
toxic over 800	sulfate as S		74.7	4.7	70.5	4.4	138.1	8.6	157.4	9.8
	anion sum			48.8		46.7		69.8		23.7
toxic over 1 for many plants	boron as B		0.10	*	0.09	•	0.09	*	0.10	*
increasing problems start at 6	SAR		14.2	****	12.0	*****	8.3		6.8	
infiltrati	n,000 square feet		slow/fair		az clow/foir		fair/slow		fair/slow	
soil texti	nre		loamy sand	oravel > 2 mm	siow/tail	oravel > 2 mm		pravel > 2 mm	gravelly loam	gravel > 2 mm
sand	1		85.4%	0.0%	89.2%	0.0%	86.5%	1.9%	48.7%	22.4%
silt			8.7%		6.3%		4.3%		40 2%	
clay	r		5.9%		4.5%		9.2%		11.1%	
lime (cal	leium carbonate)		no		no		no		yes	
Total nit	rogen		0.014%		0.017%		0.022%		0.020%	
Total org	ganic carbon		0.035%		0.058%		0.115%		0.108%	
carbon:u	utrogen ratio		2.5		3.5		5.3		0.23%	
organic f	content of soil	Jon	U.U7% 4.6%		6.0%		0.23% 8.8%		19.8%	
half satu	ration percentage		16.9%		16.9%		21.1%		33.3%	
J										

pH and ECe are measured in a saturation past/extract. and means not detected. Sand, silt, clay and mineral content based on fraction passing a 2 mm screen.

WALLACE LABS	SOILS REPORT	Print Date	Mar. 18, 2009	Receive Date	3-12-09				
365 Coral Circle	Location	Newport Beach Ci	ity Hall & Park, P	roject No. 602184-	002				
El Segundo, CA 90245	Requester	Vivian Cheng, Lei	ghton Consulting	Inc.					
(310) 615-0116	graphic interpretation: * very low,	** low, *** moderate	0						
ammonium bicarbonate/I)TPA	****high *****	very high						
extractable - mg/kg soil	Sample ID Number	09-77-01	very ngn	09-77-02		09-77-03		09-77-04	
Interpretation of data		NB-8 0.5	,	NB-8 1.5'		NB-8 3		NB-8 7.5	
low medium high	elements		graphic		graphic		graphic		graphic
0 - 7 8-15 over 15	phosphorus	1.87	•	1.84	•	2.10	•	5.60	**
0-60 60 -120 121-180	potassium	42.47	**	41.71	**	46.06	••	22.58	•
0-4 4-10 over10	iron	10.40	••••	7.10	***	12.51	••••	4.85	•••
0-0.5 0.6-1 over 1	manganese	1.92	••••	1.51	••••	2.45	••••	0.18	•
0-1 1-1.5 over 1.5	zinc	0.43	•	0.42	•	0.37		0.04	:
0-02 0.3-0.5 over 1	boron	2.04	••	0.11	••	0.12	••	0.10	
ratio of calcium to magnesium	calcium	310.16	***	367.42	•••	324.77		339.15	
needs to be more than 2 or 3	magnesium	353.21	•••••	654.94	••••	330.59	•••••	378.12	•••••
should be less than potassium	sodium	115.89	••*	405.71	*****	152.06	•••	627.87	•••••
	sulfur	8.11	*	10.58	•	7.67	•	53.24	
	molybdenum	0.13	***	0.07	•••	0.05	•••	0.37	****
	nickel	0.31	•	0.72	*	0.25		0.09	:
The following trace	aluminum	nd	•	n d	:		:	nd	:
The degree of toxicity	harium	0.13	:	0.21		1.08		0.16	
depends upon the pH of	cadmium	0.07	•	0.06	•	0.05		0.04	
the soil, soil texture,	chromium	nd	•	n d	•	n d	•	n d	•
organic matter, and the	cobalt	0.04	•	0.03	•	0.04	•	0.04	•
concentrations of the	lead	1.50	••	0.75	•	1.12	••	0.07	•
individual elements as	lithium	0.17	•	0.21	•	0.18	•	0.23	•
well as to their interactions.	mercury	nd	•	nd	•	n d	•	n d	
The all actions dependent	selenium	nđ	•	0.07	•	n d		0.06	:
The pH optimum depends	strontium	n d 2 70		n d 2 85		283		2 52	
matter and clay content-	tio	2.79	•	2.85 n d	*	n d		n d	
for clay and loam soils:	vanadium	0.58	•	0.42	•	0.63	•	0.34	•
under 5.2 is too acidic									
6.5 to 7 is ideal	Saturation Extract]							
over 9 is too alkaline	pH value	8.02	****	7.90	••••	8.11	••••	7.34	***
The ECe is a measure of	ECe (milli-	0.46	**	0.37	•	0.44	••	4.37	
the soil salinity:	mho/cm)		millieq/I		millieq/l		millieq/1		millieq/l
1-2 affects a few plants	calcium	18.4	0.9	10.5	0.5	23.7	1.2	60.6	3.0
2-4 affects some plants,	magnesium	9.5	0.8	4.5	0.4	9.4	0.8	60.6	5.0
>4 affects many plants.	sodium	58.3	2.5	62.6	2.7	69.2	3.0	033.2	27.5
	potassium	2.5		4.2	3.7		5.1	5.6	35.7
probtems over 150 nom	chloride	13	4.5 0.4	16	0.4	17	0.5	1,034	29.1
P. Sector Control Phase	nitrate as N	2	0.2	4	0.3	3	0.2	8	0.6
	phosphorus as P	0.1	0.0	0.1	0.0	0.6	0.0	2.0	0.1
toxic over 800	sulfate as S	23.4	1.5	11.0	0.7	10.1	0.6	91.5	5.7
	anion sum		2.0		1.4		1.4	0.07	35.5
toxic over 1 for many plants	boron as B	0.08	*	0.25		0.11	***	0.27	*****
increasing problems start at 6	SAR 1000 square feet	2.7	••	4.1	•••	3.0		13.8	
infiltrati	n,000 square leet	20 slow		very slow		slow		slow/fair	
soil text	ure	sandy loam	gravel > 2 mm	sandy clay loam	gravel > 2 mm	sandy loam	gravel > 2 mm	loamy sand	gravel > 2 mm
sand	1	57.6%	3.5%	57.5%	0.7%	54.2%	3.5%	83.8%	0.0%
silt	t	24.0%		16.9%		27.1%		7.1%	
clay	1	18.5%		25.6%		18.7%		9.1%	
lime (cal	cium carbonate)	yes		yes		yes		no	
Total nit	rogen	0.073%		0.062%		0.044%		0.000%	
Total org	anic carbon	0.422%		0.405%		0.452%		0.041%	
carbon:n	ntrogen ratio	5.8		6.5		10.2		NA 0.089/	
organie i moietuve	content of soil	0.84%		13 6%		11.8%		6.4%	
half satu	ration percentage	19.2%		23.8%		19.4%		20.4%	

pH and ECe are measured in a saturation paste/extract. nd means not detected. Sand, silt, clay and mineral content based on fraction passing a 2 mm screen.

WALLACE LABS	SOILS REPORT	Print Date	Mar. 18, 2009	Receive Date	3-12-09				
365 Coral Circle	Location	Newport Beach Ci	ty Hall & Park, P	roject No. 602184-0	002				
El Segundo, CA 90245	Requester	Vivian Cheng, Lei	ghton Consulting	Inc.					
(310) 615-0116	graphic interpretation: • very low,	** low. *** moderate	5						
ammonium bicarbonate/I		• • • • bigh • • • • •	on high						
extractable - mg/kg soil	Sample ID Number	09-77-05	ery mgn	09-77-06		09-77-07		09-77-08	
Interpretation of data	Sample in Number	NB-8 15		NB-8 22.5'		NB-8 30'		NB-8 37.5'	
low medium high	elements		graphic		graphic		graphic		graphic
0 = 7 - 8 = 15 over 15	phosphorus	8.73	***	8.32	•••	13.59	****	8.40	•••
0-60 60 -120 121-180	potassium	90.62	•••	110.57	•••	133.47	••••	68.25	***
0-4 4-10 over 10	iron	4.46		2.05	•	2.66	••	2.60	••
0-0.5 0.6-1 over 1	manganese	1.30	••••	0.85	•••	0.35	••	0.18	•
0-1 1-1.5 over 1.5	zinc	0.67		2.73	••••	5.91	••••	0.04	•
0-0.2 0.3-0.5 over 0.5	copper	0.89	••••	0.73	••••	1.50	••••	2.04	••••
0-0.2 0.2-0.5 over 1	boron	0.14		0.19	••	0.23	•*•	0.12	••
ratio of calcium to magnesium	calcium	685.25	•••••	720.36	•••••	604.35	*****	450.37	••••
needs to be more than 2 or 3	magnesium	1,931.32	•••••	1,886.10	•••••	1,490.35		553,/9	
should be less than potassium	sodium	1,677.85	•••••	1,730.18		1,450.04		103.02	••
	sulfur	196.13		242.79		222.03		0.10	
	notypuenum	0.44		0.89	••	0.61	•	0.26	•
The following trace	aluminum	1.0/ p.d		1.05 n d	•	n d	•	nd	•
elements may be toxic	arsenic	nd		nd	•	0.03	•	nd	•
The degree of toxicity	barium	nd	•	nd	•	n d	•	0.03	•
depends upon the pH of	cadmium	0.25	•	1.48	••	3.01	•••	0.46	•
the soil, soil texture,	chromium	nd	•	0.26	•	n d	•	n d	•
organic matter, and the	cobalt	0.20	•	0.06	•	0.06	•	0.02	•
concentrations of the	lead	0.17	•	0.07	•	0.24	•	0.15	•
individual elements as	lithium	0.49	•	0.65	•	0.44	•	0.27	•
well as to their interactions.	mercury	nd	•	n d	•	nd	•	nd	:
	selenium	0.09	•	0.03	•	0.46	:	0.24	: 1
The pH optimum depends	silver	nd	•	nd	:	nd 2.54		129	
upon soil organic	strontium	4.49	:	3.51	:	2.54 n.d	•	n.29	•
for alm and clay content-	un	n d 0.07		0.09	•	0.32	•	0.25	•
or clay and foam sons:	vanaurum	0.07	-	0.09		0.02			
65 to 7 is ideal	Saturation Extract	7							
over 9 is too alkaling	nH value		••	6.16	•••	6.45	•••	6.46	•*•
The FCe is a monsure of	FCe (milli-	6.78	*****	6.86		6.70		6.30	•••••
the soil salinity	mho/cm)	0.78	milliea/l	0.00	millieg/1		millieg/l		millieq/l
1-7 affects a few plants	calcium	117.0	5.8	140.3	7.0	155.1	7.8	191.2	9.6
2-4 affects some plants.	magnesium	165.0	13.6	182.2	15.1	180.3	14.9	197.7	16.3
> 4 affects many plants.	sodium	899.8	39.1	909.1	39.5	822.2	35.7	724.4	31.5
	potassium	6.5	0.2	7.4	0.2	8.0	0.2	5.8	0.1
	cation sum		58.8		61.8		58.6		57.5
problems over 150 ppm	chloride	1,769	49.8	1,808	50.9	1,657	46.7	1,625	45.8
	nitrate as N	79	5.7	15	1.1	15	0.1	14	1.0
	phosphorus as P	0.4	0.0	0.2	0.0	0.3	0.0	1.0	0.0
toxic over 800	sulfate as S	168.5	10.5	199.8	[2.5	190.9	59.7	170.3	57.9
tests area 1 fee many plants	anion sum	0.35	66.0	0.24	**	0.26	**	0.32	**
toxic over) for many plants	SAD	0.23	*****	0.24		10.6	*****	8.8	****
est gypsup requirementality	1 000 square feet	298		307		256		119	
infiltrati	an rate inches/hour	l slow		slow/fair		fair/slow	,	fair	
soil text	ure	clay loan	gravel > 2 mm	clay loam	gravel > 2 mm	clay loam	gravel > 2 mm	sandy loam	gravel > 2 mm
sand	1	30.5%	12.5%	32.3%	11.1%	32.7%	10.5%	76.2%	0.0%
sil	t	36.5%		34.4%		35.2%		14.4%	
clay	/	33.0%	,	33.3%		32.1%		9.4%	
lime (ca	cium carbonate)	no		no		no	•	no	
Total nit	rogen	0.016%		0.015%		0.013%	1	0.009%	
Total org	ganic carbon	0.069%		0.053%		0.040%		0.054%	
carbon:n	itrogen ratio	4.2		3.5		3.2		6.2	
organic	natter based on carbon	0.14%	•	0.11%		0.08%		0.11%	
moisture	content of soil	26.3%		27.3%		24.7%		13.5%	
half satu	ration percentage	47.6%		50.9%		40.8%		25.076	

Elements are expressed as mg/kg dry soil or mg/l for saturation extract. pH and ECe are measured in a saturation paste/extract. nd means not detected.

APPENDIX D

<u>Sheet</u>	
Data	
lation	
Perco	

					-										
	Percolation Rate (gal/sq.ft/day)	2.67	2.67	2.74	2.83	3.23	3.03	3.08	3.15	3.20	3.22	3.17	3.26	3.0	
	Δ water level (feet)	1.25	1.25	1.29	1.32	1.47	1.41	1.42	1.46	1.47	1.48	1.46	1.49	Average Rate:	
	Final water level from top (feet)	3	3	3.00	3.07	3.27	3.12	3.17	3.17	3.23	3.22	3.21	3.26		
	Initial water level from top (feet)	1.75	1.75	1.71	1.75	1.8	1.71	1.75	1.71	1.76	1.74	1.75	1.77		
	Total Depth of Hole (feet)	8	8	8	8	8	8	8	8	8	8	8	8		
P-1	Time Interval (min)	30	30	30	30	30	30	30	30	30	30	30	30		P-3
Boring ID:	Reading No.	1	2	e	4	5	6	7	8	6	10	11	12		Boring ID:

	Rate day)												
	Percolation (gal/sq.ft/	3.58	4.08	3.97	6.21	6.25	6.35	6.30	6.35	6.30	6.30	6.30	6.25
	Δ water level (feet)	1.07	1.21	1.17	1.71	1.72	1.74	1.73	1.74	1.73	1.73	1.73	1.72
	Final water level from top (feet)	2.15	2.25	2.25	2.75	2.76	2.78	2.77	2.78	2.77	2.77	2.77	2.76
	Initial water level from top (feet)	1.08	1.04	1.08	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
	Total Depth of Hote (feet)	5.2	5.2	5.2	5.2	5.2	5.2	5.2	5.2	5.2	5.2	5.2	5.2
P-3	Time Interval (min)	30	30	30	30	30	30	30	30	30	30	30	30
Boring ID:	Reading No.	۰	2	3	4	5	9	7	8	6	10	11	12

					,											
	Percolation Rate (gai/sq.ft/day)	0.39	0.31	0.33	0.33	0.31	0.35	0.40	0.50	0.37	0.37	0.39	0.39	0.4		
	Δ water level (feet)	0.20	0.16	0.17	0.17	0.16	0.18	0.21	0.26	0.19	0.19	0.20	0.20	Average Rate:		
	Final water level from top (feet)	2.41	2.37	2.38	2.42	2.37	2.39	2.37	2.37	2.38	2.42	2.41	2.41			
	Initial water level from top (feet)	2.21	2.21	2.21	2.25	2.21	2.21	2.16	2.11	2.19	2.23	2.21	2.21			
	Total Depth of Hole (feet)	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5			
P-2	Time Interval (min)	30	30	30	30	30	30	30	30	30	30	30	30			0
Boring ID:	Reading No.	1	2	3	4	5	9	7	8	6	10	11	12			
_			_	_	_	_	_	_		_		_	_		_	

Boring ID:	P-4					
Reading No.	Time Interval (min)	Total Depth of Hole (feet)	Initial water level from top (feet)	Final water level from top (feet)	∆ water level (feet)	Percolation Rate (gal/sq.ft/day)
۴	30	7.3	2.00	2.8	0.80	1.96
2	30	7.3	2.00	2.74	0.74	1.80
e.	30	7.3	2.00	2.72	0.72	1.75
4	30	7.3	2.00	2.71	0.71	1.72
5	30	7.3	1.85	2.62	0.77	1.82
9	30	7.3	1.94	2.68	0.74	1.78
7	30	7.3	1.95	2.68	0.73	1.76
8	30	7.3	1.91	2.63	0.72	1.72
					Average Pater	1.8

APPENDIX E

CLOSEST DISTANCES BETWEEN SITE AND FAULT RUPTURES

NO.	FAULT NAME	CD_1DRP	CD_2DRP	CDIST	CLODIS	CD_EPI	CD_HYPO
1	NEWPORT-INGLEWOOD (Offshore)	3.8	3.8	3.8	3.8	3.8	4.0 kr
2	NEWPORT-INGLEWOOD (L.A.Basin)	4.8	4.8	4.8	4.8	5.5	5.6 km
3	SAN JOAQUIN HILLS	9.4	0.0	5.5	5.5	0.0	5.5 km
4	PALOS VERDES	23.3	23.3	23.3	23.3	23.3	23.3 km
5	WHITTIER	33.8	33.8	33.8	33.8	34.1	34.1 km
6	ELSINORE (GLEN IVY)	35.1	35.1	35.1	35.1	35.1	35.1 km
7	PUENTE HILLS BLIND THRUST	35.6	35.6	36.0	36.0	36.6	37.0 km
8	CHINO-CENTRAL AVE. (Elsinore)	37.4	30.5	34.0	34.0	31.1	34.1 km
9	CORONADO BANK	37.9	37.9	37.9	37.9	38.7	38.7 kt
10	SAN JOSE	48.1	48.1	48.1	48.1	48.9	48.9 km
11	ELSINORE (TEMECULA)	48.8	48.8	48.8	48.8	49.5	49.6 kr
12	UPPER ELYSIAN PARK BLIND THRUST	55.4	55.4	55.5	55.5	56.3	56.4 kr
13	SIERRA MADRE	58.6	58.6	58.6	58.6	59.5	59.5 km
14	CUCAMONGA	59.2	59.2	59.2	59.2	60.5	60.5 km
15	RAYMOND	61.2	61.2	61.2	61.2	61.5	61.5 k m
16	VERDUGO	63.8	63.8	63.8	63.8	65.2	65.2 km
17	CLAMSHELL-SAWPIT	64.6	64.6	64.6	64.6	65.7	65.7 kr
18	HOLLYWOOD	65.9	65.9	65.9	65.9	66.7	66.7 k u
19	ROSE CANYON	68.1	68.1	68.1	68.1	69.2	69.2 kr
20	SANTA MONICA	71.5	71.5	71.5	71.5	71.8	71.8 km
21	SAN JACINTO-SAN BERNARDINO	74.0	74.0	74.0	74.0	74.0	74.0 km
22	SAN JACINTO-SAN JACINTO VALLEY	74.8	74.8	74.8	74.8	74.9	74.9 km
23	MALIBU COAST	77.1	77.1	77.1	77.1	78.2	78.2 km
24	SAN ANDREAS - SB-Coach. M-2b	82.8	82.8	82.8	82.8	82.8	82.8 km
25	SAN ANDREAS - Whole M-1a	82.8	82.8	82.8	82.8	82.8	83.0 kt
26	SAN ANDREAS - San Bernardino M-1	82.8	82.8	82.8	82.8	82.8	82.8 km
27	SAN ANDREAS - SB-Coach. M-1b-2	82.8	82.8	82.8	82.8	82.8	82.8 km
28	SAN ANDREAS - Mojave M-1c-3	83.5	83.5	83.5	83.5	83.6	83.6 km
29	SAN ANDREAS - 1857 Rupture M-2a	83.5	83.5	83.5	83.5	83.6	83.6 km
30	SAN ANDREAS - Cho-Moj M-1b-1	83.5	83.5	83.5	83.5	83.6	83.6 ka
31	ELSINORE (JULIAN)	83.7	83.7	83.7	83.7	84.7	84.7 kr
32	SIERRA MADRE (San Fernando)	84.2	84.2	84.2	84.2	85.3	85.3 km
33	CLEGHORN	87.0	87.0	87.0	87.0	87.1	87.1 ka
34	ANACAPA-DUME	86.9	86.9	86.9	86.9	88.2	88.2 kr
35	SAN GABRIEL	87.6	87.6	87.6	87.6	88.6	88.6 km
36	NORTHRIDGE (E. Oak Ridge)	89.6	82.8	85.2	85.2	84.1	86.3 kı
37	SAN JACINTO-ANZA	89.8	89.8	89.8	89.8	90.5	90.5 km
38	NORTH FRONTAL FAULT ZONE (West)	96.8	94.0	94.9	94.9	95.2	96.0 km
39	SANTA SUSANA	98.4	98.4	98.4	98.4	99.1	99.1 kr

EXPLANATION

CD_1DRP = Closest distance to projection of rupture area along fault trace. CD_2DRP = Closest distance to surface projection of the rupture area. CDIST = Closest distance to seismogenic rupture. CLODIS = Closest distance to subsurface rupture. CD_EPI = Closest epicentral distance. CD_HYPO = Closest hypocentral distance.

PROBABILITY OF EXCEEDANCE BOZ. ET AL.(1999)HOR PS COR

RETURN PERIOD vs. ACCELERATION 1.50 1.25 SADIGH ET AL. (1997) DEEP SOIL 0.50 0.75 1.00 Acceleration (g) 0.25 0.00 100000 1000 100 10000 Return Period (yrs)

PROBABILITY OF EXCEEDANCE SADIGH ET AL. (1997) DEEP SOIL

RETURN PERIOD vs. ACCELERATION ABRAHAMSON & SILVA (1997) SOIL

Return Period (yrs)

PROBABILITY OF EXCEEDANCE ABRAHAMSON & SILVA (1997) SOIL

****	* * * * * * * * * * * * * * * * * * * *	
*	*	
*	EQSEARCH *	
*	*	
*	Version 3.00 *	
*	*	
****	* * * * * * * * * * * * * * * * * * * *	

.

ESTIMATION OF PEAK ACCELERATION FROM CALIFORNIA EARTHQUAKE CATALOGS

JOB NUMBER: 602184002

DATE: 07-06-2009

JOB NAME: City of NP City Hall

EARTHQUAKE-CATALOG-FILE NAME: ALLQUAKE.DAT

MAGNITUDE RANGE: MINIMUM MAGNITUDE: 4.00 MAXIMUM MAGNITUDE: 9.00

SITE COORDINATES: SITE LATITUDE: 33.6067 SITE LONGITUDE: 117.8730

SEARCH DATES: START DATE: 1800 END DATE: 1999

SEARCH RADIUS:

100.0 mi 160.9 km

ATTENUATION RELATION: 25) Campbell & Bozorgnia (1997 Rev.) - Soft Rock UNCERTAINTY (M=Median, S=Sigma): M Number of Sigmas: 0.0 ASSUMED SOURCE TYPE: DS [SS=Strike-slip, DS=Reverse-slip, BT=Blind-thrust] SCOND: 0 Depth Source: A Basement Depth: 5.00 km Campbell SSR: 1 Campbell SHR: 0 COMPUTE PEAK HORIZONTAL ACCELERATION

MINIMUM DEPTH VALUE (km): 3.0

			1	TIME		I I	SITE	SITE	APPROX.
FILE	L LAT	LONG			DEPTH	OUAREL	ACC	IMM I	DISTANCE
CODE		WECT			(lem)				mi [km]
CODE	NORTH	I MEDI		г н м зест	(KIII)	MAG.	g	1 1 1 1 1 1	
	++-	+	+	+	+		++		
GSP	33.6200	117.9000	04/07/1989	200730.2	13.0	4.50	0.182	VIII	1.8(2.9)
DMG	33.6170	117.9670	03/11/1933	154 7.8	0.0	6.30	0.420	X	5.4(8.8)
DMG	33.5450	117.8070	10/27/1969	1316 2.3	6.5	4.50	0.099	VII	5.7(9.2)
MGI	33.7000	117.9000	07/08/1902	945 0.0	0.0	4.00	0.058	VII	6.6(10.7)
DMG	33.5750	1117.9830	03/11/1933	518 4.0	0.0	5.201	0.147	IVITI	6.7(10.8)
DMG	133.5670	1117.9830	07/07/1937		0 0		0 055		6 9 (11.1)
DMG	133 5670	1117 9930	01/17/1031	1933 0 01	0.0		0.055		6 9 (11 1)
DMC	133 6500	117 0010	104/17/1954	120 214 51	0.0		0.053		7.2(11.1)
DMG	133.0590	1117 0700	10/20/1961		0.1	4.001	0.053		7.2(11.0)
DMG	133.6650	1117.9790	110/20/1961	214240.7	1.2	4.00	0.052	VI	7.3(11.7)
DMG	33.6000	118.0000	03/11/1933	217 0.0	0.0	4.50	0.077	VII	7.3(11.8)
DMG	33.6000	118.0000	03/11/1933	231 0.0	0.0	4.40	0.071	VI	7.3(11.8)
DMG	33.6540	117.9940	10/20/1961	194950.5	4.6	4.30	0.062	VI	7.7(12.4)
DMG	33.6000	118.0170	12/25/1935	1715 0.0	0.0	4.50	0.066	VI	8.3(13.3)
DMG	33.6170	118.0170	03/15/1933	111332.0	0.0	4.90	0.090	VII	8.3(13.4)
DMG	33.6170	1118.0170	03/14/1933	19 150.0	0.0	5.10	0.106	I VIII	8.3(13.4)
DMG	33.6170	118.0170	10/02/1933	1326 1 0	0 0		0 045	I VT I	8 3 (13, 4)
DMG	133 6800	1117 9930	111/20/1961	85334 7	1 1		0.043		8 6(13 8)
DMC	133 6710	1110 0120		00004.7	4.4		0.043		0.0(10.0)
DMG	133.6710	1110.0120	10/20/1961	223534.2	5.0	4.10	0.043		9.1(14.7)
DMG	33.61/0	1118.0330	05/21/1938	944 0.0	0.0	4.001	0.039		9.2(14.8)
DMG	33.5610	118.0280	01/15/1937	183547.0	10.0	4.00	0.031		11.1(17.9)
DMG	33.6830	118.0500	03/11/1933	658 3.0	0.0	5.50	0.098	VII	11.5(18.4)
DMG	33.6830	118.0500	03/11/1933	1250 0.0	0.0	4.40	0.040	V	11.5(18.4)
DMG	33.7670	117.8170	08/22/1936	521 0.0	0.0	4.00	0.029	V	11.5(18.5)
DMG	33.7500	118.0000	11/16/1934	2126 0.0	0.0	4.00	0.027	V	12.3(19.8)
DMG	33.7000	1118.0670	07/20/1940	4 113.0	0.0	4.001	0.025	I V I	12.9(20.7)
DMG	33.7000	1118.0670	03/11/1933	51022.0	0.0	5.101	0.060	I VI I	12.9(20.7)
DMG	33.7000	1118 0670	03/11/1933	85457 0	0 0	5.10	0 060	I VT I	12.9(20.7)
DMG		1118 0670	02/08/19/0	165617 0	0.0		0.025		12.9(20.7)
DAG	133 5000			E2020 7	6.0		0.025		12.2(20.7)
FA5 MCT	133.0000	117 0000		33920.7	0.0		0.035		13.3(21.4)
MGI		117.9000	05/22/1902		0.0	4.30	0.030		13.4(21.6)
MGI	33.8000	117.8000	11/04/1926	2238 0.0	0.0	4.60	0.036		14.0(22.5)
MGI	33.8000	117.8000	11/10/1926	1723 0.0	0.0	4.60	0.036	V	14.0(22.5)
MGI	33.8000	117.8000	05/19/1917	719 0.0	0.0	4.00	0.022	IV	14.0(22.5)
MGI	33.8000	117.8000	11/07/1926	1948 0.0	0.0	4.60	0.036	V	14.0(22.5)
MGI	33.8000	117.8000	05/20/1917	945 0.0	0.0	4.00	0.022	IV	14.0(22.5)
MGI	33.8000	117.8000	11/09/1926	1535 0.0	0.0	4.60	0.036	V	14.0(22.5)
MGI	33.8000	117.8000	05/19/1917	635 0.0	0.0	4.00	0.022	IV	14.0(22.5)
DMG	33.6170	118.1170	01/20/1934	2117 0.0	0.0	4.50	0.033	V	14.0(22.6)
PAS	33.4710	118.0610	02/27/1984	101815 0	6.0	4 001	0.021	TVI	14.3(23.0)
DMG	33 5170	118 1000	03/22/1941	82240 0	0.0		0 021		144(233)
DMC	33 8000	1110.1000	10/21/1012		0.0		0.021		15.2/2/5)
DMC	133.3000	1110.0000		936 0.0	0.0		0.019		15.2(24.5)
DMG		1110.0030	03/12/1933	0.0 010	0.0	4.601	0.030		15.6(25.1)
DMG	33.7500	1118.0830	04/02/1933	8 0 0.0	0.0	4.00	0.019	IVI	15.6(25.1)
DMG	33.7500	118.0830	03/12/1933	448 0.0	0.0	4.001	0.019	I IV I	15.6(25.1)
DMG	33.7500	118.0830	03/12/1933	15 2 0.0	0.0	4.20	0.022	I VI	15.6(25.1)
DMG	33.7500	118.0830	03/13/1933	432 0.0	0.0	4.70	0.033	V	15.6(25.1)
DMG	33.7500	118.0830	03/18/1933	2052 0.0	0.0	4.20	0.022	IV	15.6(25.1)
DMG	33.7500	118.0830	03/12/1933	2128 0.0	0.0	4.10	0.020	IV I	15.6(25.1)
DMG	33.7500	118.0830	03/11/1933	1357 0.01	0.0	4.001	0.019	IVI	15.6(25.1)
DMG	33.7500	118.0830	03/12/1933	610.0	0.0	4.201	0.022	IIVI	15.6(25.1)
DMG	33,7500	118.0830	03/21/1933	326 0 0	0.0	4,101	0.020	ITVI	15.6(25.1)
DMG	33 7500	1118 0830	03/13/1033	343 0 0	0.0		0 020	i TV I	15 6(25 1)
DMG	33 7500	118 0030	103/12/10221	835 0 01	0.0		0 022	, <u> </u>	15 6(25 1)
DHG	55.7500	110.0000	103/15/1333	035 0.0	0.0	4.20	0.022	I TA I	10.0(20.1)

FILE	 LAT.	 LONG.	 DATE	דבב תוד ניט)	4E fC)	DEPTH	 QUAKE	SITE ACC.	SITE MM	APPRO DIST/	DX. ANCE
CODE	NORTH	WEST	l	I H M	Sec	(km)	MAG.	g	INT.	mi	[km]
DMC	++-	+	+++	11246		-++		++		15 6/	25 1)
DMG	33.7500	1118 0830	103/23/1933	1 617	0.01	0.0	1 4.101	0.020		15.6(25.1)
DMG	33.7500	1118 0830	103/12/1933	11738	0.01	0.0	1 4 501	0.028		15.6(25.1
DMG	33.7500	1118.0830	103/12/1933	11825	0.01	0.0		0.020	ITVI	15.6(25.1)
DMG	33.7500	118.0830	03/11/1933	216	0.01	0.0	4.801	0.036	I V I	15.6(25.1)
DMG	33.7500	118.0830	03/12/1933	740	0.0	0.0	4.20	0.022	I IV I	15.6(25.1)
DMG	33.7500	118.0830	03/16/1933	1529	0.0	0.0	4.20	0.022	IVI	15.6(25.1)
DMG	33.7500	118.0830	03/11/1933	11147	0.0	0.0	4.40	0.026	V	15.6(25.1)
DMG	33.7500	118.0830	03/12/1933	1651	0.0	0.0	4.00	0.019	IV	15.6(25.1)
DMG	33.7500	118.0830	03/12/1933	034	0.0	0.0	4.00	0.019	I IV	15.6(25.1)
DMG	33.7500	118.0830	03/11/1933	252	0.0	0.0	4.00	0.019	IV	15.6(25.1)
DMG	33.7500	118.0830	03/12/1933	546	0.0	0.0	4.40	0.026	V	15.6(25.1)
DMG	133.7500	118.0830	03/11/1933	258	0.0	0.0	4.00	0.019	IV	15.6(25.1)
DMG	33.7500	118.0830	03/23/1933	840	0.0	0.0	4.10	0.020	IVI	15.6(25.1)
DMG	33.7500	118.0830	03/11/1933	35	0.01	0.0	4.201	0.022	I IV I	15.6(25.1)
DMG	33.7500	118.0830	03/11/1933	39	0.01	0.0	4.401	0.026		15.6(25.1
DMG	133.7500	1110.0830	03/11/1933	1040	0.01	0.0	4.201	0.022		15.6(25.1)
DMG	133.7500	1110.0030	103/11/1933	1 226	0.01	0.0		0.020		15.6(25.1)
DMG	33.7500	1118 0830	103/11/1933	1 330	0.01	0.0		0.019		15.6(25.1)
DMG	33.7500	1118.0830	103/11/1933	1 347	0.0	0.0	4.00 4.10	0.020	ITVI	15.6(25.1
DMG	33.7500	1118.0830	03/12/1933	12354	0.01	0.0	4.501	0.028		15.6(25.1)
DMG	33.7500	118.0830	03/11/1933	439	0.01	0.0	4.90	0.039	I V I	15.6(25.1)
DMG	33.7500	118.0830	03/11/1933	440	0.0	0.0	4.70	0.033	I V I	15.6(25.1)
DMG	33.7500	118.0830	03/11/1933	88	0.0	0.0	4.50	0.028	V	15.6(25.1)
DMG	33.7500	118.0830	03/13/1933	13182	28.0	0.0	5.30	0.054	VI	15.6(25.1)
DMG	33.7500	118.0830	03/11/1933	515	0.0	0.0	4.00	0.019	IV	15.6(25.1)
DMG	33.7500	118.0830	03/11/1933	513	0.0	0.0	4.70	0.033	V	15.6(25.1)
DMG	33.7500	118.0830	03/11/1933	259	0.0	0.0	4.60	0.030	I V I	15.6(25.1)
DMG	33.7500	118.0830	03/11/1933	2 4	0.0	0.0	4.90	0.039		15.6(25.1)
DMG	33.7500	118.0830	03/11/1933	25	0.0	0.0	4.30	0.024	IVI	15.6(25.1)
DMG	33.7500	118.0830	03/11/1933	29	0.0	0.0	5.00	0.042		15.6(25.1)
DMG	33.7500	1110.0030	103/11/1933	323	0.0	0.0		0.042		15.0(25.1) 25.1)
DMG	33.7500	118.0830	103/11/1933	1 211	0.0	0.0	4.40 4.20	0.020		15.6(25.1)
DMG		1118 0830	103/11/1933	1 635	0.01	0.0	4.20 4.20	0.022		15.6(25.1
DMG	33.7500	118.0830	03/16/1933	11456	0.01	0.0	4.001	0.019	IIVI	15.6(25.1)
DMG	33.7500	118.0830	03/11/1933	751	0.0	0.0	4.20	0.022	IV	15.6(25.1)
DMG	33.7500	118.0830	03/16/1933	1530	0.0	0.0	4.10	0.020	IVI	15.6(25.1)
DMG	33.7500	118.0830	03/12/1933	027	0.0	0.0	4.40	0.026	V	15.6(25.1)
DMG	33.7500	118.0830	03/11/1933	832	0.0	0.0	4.20	0.022	UV I	15.6(25.1)
DMG	33.7500	118.0830	03/11/1933	837	0.0	0.0	4.00	0.019	IV	15.6(25.1)
DMG	33.7500	118.0830	03/20/1933	1358	0.0	0.0	4.10	0.020	I VI	15.6(25.1)
DMG	33.7500	118.0830	03/11/1933	910	0.0	0.0	5.10	0.045	VI	15.6(25.1)
DMG	33.7500	118.0830	03/11/1933	911	0.0	0.0	4.40	0.026	V	15.6(25.1)
DMG	33.7500	118.0830	03/23/1933	1831	0.0	0.0	4.10	0.020	IV	15.6(25.1)
DMG	33.7500	118.0830	03/11/1933	1025	0.0	0.0	4.00	0.019	IVI	15.6(25.1)
DMG	33.7500	1110 0020	103/11/1933	11045	0.0		4.00	0.019		15.6(25.1) 25.1)
DMG	33.7500	1118 0030	103/30/1033	1122E	0.0			0.019		15.0(25.1) 25.1)
DMC	33.7500	1118 0830	103/11/1033	11120	0.0		4.40 <u>4</u> .00	0.020		15 6/	25.1
DMG	33.7500	118.0830	103/11/1933	11138	0.0		4,001	0.019	IIV	15.6(25.1)
DMG	33.7500	118.0830	03/11/1933	11141	0.0	0.0	4.20	0.022	IV	15.6(25.1)
										- (,

·----- ,

	I	1	I	יד ד	4E	1	I	SITE	ISITE	APPR	DX.
ਸ਼ਾਸ	י I ד.באידי		י דידערו	/ / / / / /		ווייסקת	UIIARE	ACC		DIST	ANCE
CODE		WECT	I DAIL			/1		Acc.		mi	[km]
CODE	NORTH	WEST	I .	НМ	Seci	(KIII)	MAG.	y.	11111.1	IIIT	{ vm]
	++-	+	+			-++		++		15 61	05 1)
DMG	33.7500	118.0830	04/02/1933	1536	0.0	0.0	4.00	0.019	IVI	15.6(25.1)
DMG	33.7500	118.0830	03/11/1933	1547	0.0	0.0	4.00	0.019	IV	15.6(25.1)
DMG	33.7500	118.0830	03/11/1933	230	0.0	0.0	5.10	0.045	VI	15.6(25.1)
DMG	33.7500	118.0830	03/17/1933	1651	0.0	0.0	4.10	0.020	IV	15.6(25.1)
DMG	33.7500	118.0830	03/11/1933	1956	0.01	0.0	4.20	0.022	IV	15.6(25.1)
DMG	33.7500	1118.0830	03/13/1933	1532	0.01	0.0	4.10	0.020	IV	15.6(25.1)
DMG	133.7500	118.0830	03/11/1933	524	0.01	0.01	4.201	0.022	IVI	15.6(25.1)
DMG	33.7500	118.0830	03/14/1933	036	0 01	0.01	4.201	0.022	IIVI	15.6(25.1)
DMG	133 7500	1118 0830	103/11/1933	227		0.01	4.601	0.030		15.6(25.1)
DMC	133 7500	1118 0830	103/11/1933	11653	0.01	0.01		0.036		15 60	25 1)
DMC	122 7500	1110.0030	102/11/1933	11044	0.01	0.01		0.010		15.6/	25.1)
DMG	133.7500	1110.0030	02/11/1933	11944	0.01	0.01		0.019		15.0(25.1)
DMG	33.7500	1118.0830	103/11/1933	23 5	0.01	0.0	4.201	0.022	1 1 1 1	15.6(25.1)
DMG	33.7500	1118.0830	03/11/1933	22 0	0.0	0.0	4.40	0.026		15.6(25.1)
DMG	33.7500	118.0830	03/11/1933	2231	0.0	0.0	4.40	0.026		15.6(25.1)
DMG	33.7500	118.0830	03/11/1933	222	0.0	0.0	4.00	0.019	IV	15.6(25.1)
DMG	33.7500	118.0830	03/13/1933	1929	0.0	0.0	4.20	0.022	IV	15.6(25.1)
DMG	33.7500	1118.0830	03/14/1933	1219	0.0	0.0	4.50	0.028	V	15.6(25.1)
DMG	33.7500	1118.0830	03/11/1933	759	0.0	0.0	4.10	0.020	IV	15.6(25.1)
DMG	33.7500	1118.0830	03/15/1933	28	0.0	0.0	4.10	0.020	IV	15.6(25.1)
DMG	33.7500	1118.0830	03/15/1933	432	0.0	0.0	4.10	0.020	IVI	15.6(25.1)
DMG	133.7500	1118.0830	03/11/1933	257	0.0	0.0	4.20	0.022	I IV I	15.6(25.1)
DMG	33.7500	1118 0830	03/11/1933	521	0 0	0 0		0 026	V	15.6(25.1)
DMC	133 7500	1118 0830	103/11/1933	1 611	0.0	0.0		0.026	U V I	15 6(25.1
DMC	122 7500	1110.0000	103/11/1933	1 126	0.0	0.0		0.020		15 6(25.1)
DMG	133.7500	1110.0030	103/11/1933	430	0.0			0.030		15.6(25.1)
DMG	33.7500	1118.0830	103/11/1933	926	0.0	0.0	4.10	0.020		15.0(25.1)
DMG	33.7500	1118.0830	103/11/1933	2240	0.0	0.0	4.40	0.026		15.0(25.1)
DMG	33.7500	118.0830	03/11/1933	555	0.0	0.0	4.00	0.019	I IV I	15.6(25.1)
DMG	33.7500	118.0830	03/11/1933	618	0.0	0.0	4.20	0.022	VI	15.6(25.1)
DMG	33.7500	118.0830	04/01/1933	642	0.0	0.0	4.20	0.022	IV	15.6(25.1)
DMG	33.7500	118.0830	03/14/1933	2242	0.0	0.0	4.10	0.020	IV	15.6(25.1)
DMG	33.7500	118.0830	03/11/1933	210	0.0	0.0	4.60	0.030	V	15.6(25.1)
DMG	33.7500	118.0830	03/11/1933	2232	0.0	0.0	4.10	0.020	IV	15.6(25.1)
DMG	33.7500	1118.0830	03/19/1933	2123	0.0	0.0	4.20	0.022	IV	15.6(25.1)
DMG	33.7500	1118.0830	03/11/1933	553	0.0	0.0	4.00	0.019	IV	15.6(25.1)
DMG	33.7330	1118.1000	03/11/1933	115 9	0.0	0.0	4.40	0.026	IVI	15.7(25.2)
DMG	33.7330	1118.1000	03/11/1933	11350	0 0	0.0	4.40	0.026	i vi	15.7(25.2)
DMG	133 7330	1118 1000	103/11/1933	1447	0.0		4 40	0 026		15.7(25.2)
DMC	33 7670	1118 1170	111/01/1030	12111	0.0			0.015		17 9/	28 7)
DMC	133.7070	1110.1170		111 1	0.0			0.015		17 9(28 81
DMG	133.7500	1118.1330	103/11/1933	111 4	0.0		4.00	0.025		10 1/	20.0/
DMG	133.8540	1117.7520	110/04/1961	221	31.6	4.3	4.10	0.016		10.4(29.1)
DMG	33.6300	118.2000	109/13/1929	11323.	38.2	0.0	4.00	0.014		18.9(30.4)
DMG	33.6330	118.2000	11/01/1940	20 0	46.0	0.0	4.00	0.014	I IV I	18.9(30.4)
DMG	33.6820	117.5530	07/05/1938	18 6	55.7	10.0	4.50	0.021	IV	19.1(30.8)
DMG	33.7830	118.1330	01/13/1940	749	7.0	0.0	4.00	0.014	III	19.3(31.0)
DMG	33.7830	118.1330	10/02/1933	910	17.6	0.0	5.40	0.042	VI	19.3(31.0)
DMG	33.7830	118.1330	11/20/1933	1032	0.0	0.0	4.00	0.014	III	19.3(31.0)
DMG	33.7500	118.1670	05/16/1933	2058	55.0	0.0	4.00	0.013	III	19.6(31.5)
PAS	33.5380	118.2070	05/25/1982	1344	30.3	13.7	4.10	0.014	IVI	19.8(31.8)
DMG	33.7500	1118,1830	108/04/1933	1 417	48.0	0.0	4.00	0.013	IIII	20.4(32.8)
MGT	133.8000	1117.6000	104/22/1918	12115	0 0		1 5 00	0.028	l V	20.60	33.1)
DMC	133 8000	1117 6000	109/16/1903	11210	0.0		1 4 00		I TTT	20 60	33.11
DMC	133 6000	1117 5110	105/21/1020	1 031			1 5 50	0.012		20.00	35 01
DMC	100.000	1117 5110	106/10/1026	11117	0.4		1 4 00			21.0(35 11
Drig	100.1110	1111.31/0	100/19/1930	$1 \pm \pm \pm 1$	0.0	1 0.0	1 4.00	0.011	1 1 1 1	21.0(JJ.+/

- ----

				TIME			SITE	SITE	APPR	OX.
FILE	LAT.	LONG.	DATE	(UTC)	DEPTH	OUAKE	ACC.	MM	DIST	ANCE
CODE	NORTH	WEST		H M Sec	(km)	I MAG.I	a	ITNT.I	mi	[km]
	+ - +-	+	, +	+	-+					[]
DMC	133 7170	1117 5070	100/06/1020	122 056 01	10.0		0 011		22 4 (26 01
DMG	133.7170	1110.0000	100/00/1938	22 056.0	10.0	4.00	0.011	111	22.4(36.0)
DMG	133.7830	1118.2000	12/2//1939	192849.0	0.0	4.70	0.019	IIVI	22.4(36.0)
DMG	33.5000	118.2500	06/18/1920	10 8 0.0	0.0	4.50	0.016	IV	22.9(36.9)
DMG	33.3670	118.1500	04/16/1942	72833.0	0.0	4.00	0.010	III	23.0(37.0)
DMG	33.7250	117.4980	01/03/1956	02548.9	13.7	4.70	0.018	IV	23.0(37.1)
DMG	33.9000	118.1000	07/08/1929	1646 6.7	13.0	4.70	0.017	IV	24.1(38.7)
DMG	133.7590	118.2530	08/31/1938	31814.2	10.0	4.50	0.014	IV	24.2(39.0)
DMG	33.8170	118.2170	10/22/1941	65718.5	0.0	4.901	0.019	IVI	24.5(39.5)
DMG	33.7480	117.4790	06/22/1971	104119.0	8.0	14.201	0.011	I TITI	24.6(39.7)
PAS	33,9650	117.8860	01/01/1976	172012 9	6.2	4 201	0.011	I TTTI	24.7(39.8)
DMG	33 7830	1118 2500	111/14/1941	84136 3	0.0	5 401	0 029		24 8 (40 0)
DMG	33 7330	1117 4670	10/26/1954	162226 0			0.010	, , , ,	21.0(10.0)
CSP	133 0510	1117 7000	101/05/1000	102220.0			0.010	<u> </u>	24.9	40.1)
DMC	133.9510	110,7090			11.0	4.30	0.011		25.00	41.1)
DMG	133.0070	118.2000	111/13/1933		0.0	4.001	0.009	111	26.0(41.8)
DMG	133.8670	1118.2170	06/19/1944	0 333.0	0.0	4.50	0.012		26.7(43.0)
DMG	33.8670	118.2170	06/19/1944	3 6 7.0	0.0	4.40	0.011	III	26.7(43.0)
DMG	33.9670	118.0500	01/30/1941	13446.9	0.0	4.10	0.009	III	26.9(43.2)
DMG	33.5430	118.3400	09/14/1963	35116.2	2.2	4.20	0.009	III	27.2(43.8)
DMG	33.9960	117.9750	06/15/1967	458 5.5	10.0	4.10	0.009	III	27.5(44.3)
MGI	33.9000	118.2000	10/08/1927	1914 0.0	0.0	4.60	0.013	III	27.6(44.4)
MGI	33.8000	118.3000	12/31/1928	1045 0.0	0.0	4.00	0.008	II	27.9(44.9)
DMG	33.8000	118.3000	11/03/1931	16 5 0.0	0.0	4.001	0.008	III	27.9(44.9)
DMG	33.7000	1117.4000	05/15/1910	1547 0.0	0.0	6.001	0.039	I VI	27.90	45.0)
DMG	33.7000	117,4000	05/13/1910	620 0.0	0.0	5.001	0.017	TVI	27.9(45.0)
DMG	33.7000	117,4000	04/11/1910		0.0		0 017		27.9(45.0)
DMG	33 9500	1118 1330	10/25/1933		0.0		0.010		28 0/	45 1)
MGT	34 0000		105/05/1933		0.0	1 4 001	0.010	<u>+</u> + +	20.0(15 2)
MCT			12/25/1023	735 0.0	0.0		0.008		20.1(45.2)
MGI	34.0000	110.0000	12/25/1903	1 7 0.0	0.0	5.001	0.017	IV	28.1(45.2)
MGI			05/05/1929		0.0	4.60	0.012		28.1(45.2)
DMG	33.8500	118.2670	03/11/1933	629 0.0	0.0	4.40	0.010		28.2(45.3)
DMG	33.8500	118.2670	03/11/1933	1425 0.0	0.0	5.00	0.017	IVI	28.2(45.3)
PAS	34.0060	117.7390	02/18/1989	717 4.8	3.3	4.30	0.009	III	28.6(46.1)
MGI	34.0000	117.7000	12/03/1929	950.0	0.0	4.00	0.007	II	28.9(46.5)
DMG	33.9500	117.5830	04/11/1941	12024.0	0.0	4.00	0.007	II	29.0(46.6)
DMG	33.9390	118.2050	01/11/1950	214135.0	0.4	4.10	0.008	II	29.8(48.0)
DMG	33.6330	118.4000	10/17/1934	938 0.0	0.0	4.00	0.007	III	30.4(48.8)
DMG	33.6630	118.4130	01/08/1967	738 5.3	17.7	4.00	0.006	III	31.3(50.3)
DMG	33.8330	117.4000	06/05/1940	82727.0	0.0	4.001	0.006	IIII	31.3(50.4)
DMG	33.8830	118.3170	03/11/1933	1457 0.01	0.0	4.90	0.013	I TTTI	31.8(51.2)
PAS	34.0500	118.0870	10/01/1987	155953 51	10 4		0 006		33 0 (53 1)
MGT		118 2000	106/26/1917		10.4		0.000		33.0(53 1)
MGT		118 2000	02/12/1017		0.0		0.010	<u> </u>	22.0(53 1)
MCT		110.2000	02/13/191/	13 5 0.0	0.0		0.010		22.0(53.1) 52.1)
MGI		118.2000	06/26/1917	2130 0.0	0.0	4.60	0.010		33.0(55.1)
MGI		118.2000	06/26/191/	2120 0.0	0.0	4.601	0.010		33.0(53.1)
MGI	34.0000	118.2000	06/26/1917	424 0.0	0.0	4.00	0.006		33.0(53.1)
PAS	34.0520	118.0900	10/01/1987	151231.8	10.8	4.701	0.010	III	33.2(53.4)
PAS	34.0490	118.1010	10/01/1987	144541.5	13.6	4.70	0.010	III	33.2(53.5)
PAS	34.0610	118.0790	10/01/1987	144220.0	9.5	5.90	0.027	V	33.5(53.9)
GSP	34.0200	118.1800	06/12/1989	172225.5	16.0	4.10	0.006	II	33.5(54.0)
DMG	33.7830	118.4170	11/02/1940	25826.0	0.0	4.00	0.006	II	33.5(54.0)
DMG	33.7830	118.4170	10/12/1940	024 0.01	0.0	4.001	0.006	III	33.5(54.0)
DMG	33.7830	118.4170	11/01/1940	725 3.0	0.0	4.00	0.006	III	33.5(54.0)
DMG	33.7830	118.4170	10/14/1940	205111.0	0.0	4.00	0.006	III	33.5(54.0)

EARTHQUAKE SEARCH RESULTS

	I	1		TTME		I ł	SITE	ISTTE	APPROX.
FILE	I ፲ አጥ	LONG	' Dእጥድ		טייסיסס		ACC		DISTANCE
CODE		L MD CD	DAIL			QUARE	Acc.		DISTANCE
CODE	NORTH	WEST		H M Sec	(KM)	MAG.	g	INT.	mi [Km]
	++-	+	+	+	++	+	++		
PAS	34.0600	118.1000	10/01/1987	1449 5.9	11.7	4.70	0.010	III	33.9(54.5)
PAS	34.0770	118.0470	02/11/1988	152555.7	12.5	4.70	0.010	III	34.0(54.7)
GSP	34.0300	1118.1800	06/12/1989	165718.4	16.0	4.401	0.008	IIII	34.1(54.9)
DMG	33 6320	1118 4670	01/08/1967		11 4		0 006	, , TT	34 2 (55 0)
DMG	34 1000	1117 9000	03/31/1031		0.0		0.006	<u> </u>	34 3 (55 2)
DMG	134.1000	1117 5000	103/31/1931	12033 0.01	0.0	4.001	0.000	<u> </u>	34.3(55.2)
DMG	134.0000	1117.5000	107/03/1908	1255 0.0	0.0	4.00	0.006		34.6(55.6)
MGI	34.0000	117.5000	12/16/1858	10 0 0.0	0.0	7.00	0.061	VI	34.6(55.6)
PAS	34.0730	118.0980	10/04/1987	105938.2	8.2	5.30	0.016	IV	34.7(55.8)
PAS	34.0760	118.0900	10/01/1987	1448 3.1	11.7	4.10	0.006	II	34.7(55.9)
T-A	34.0000	118.2500	05/02/1856	810 0.01	0.0	4.301	0.007	II	34.7(55.9)
Т-А	34.0000	1118.2500	09/23/1827		0.0	. 5.001	0.012	I TTTI	34.7 (55.9)
Τ-Δ	34 0000	1118 2500	101/17/1857		0.0		0 007	TT	34 7 (55 9)
T 73	134 0000	1110.2500	102/26/1060		0.0		0.007	<u>+</u> 	24.7(55.0)
	134.0000	110.2500	03/20/1000		0.0	5.001	0.012	/ 111 / TTT/	34.7(55.9)
T-A	134.0000	1118.2500	101/10/1856		0.0	5.00	0.012		34.7(55.9)
'I'-A	34.0000	118.2500	03/21/1880	1425 0.0	0.0	4.30	0.007	III	34.7(55.9)
T-A	34.0000	118.2500	05/04/1857	6 0 0.0	0.0	4.30	0.007	II	34.7(55.9)
MGI	34.1000	118.0000	01/27/1930	2026 0.0	0.0	4.60	0.009	III	34.8(56.0)
DMG	33.7670	1118.4500	110/11/1940	55712.3	0.0	4.701	0.010	III	34.9(56.2)
DMG	133,9830	1118.3000	02/11/1940	192410.0	0.0	4.001	0.005		35.7(57.5)
DMG	34 1000	1117 6830	01/18/1934		0.0		0 005	: TT	35 8 (57 5)
DMC	134 1000	1117 6020			0.0		0.000	<u> </u>	25 9 (57 5)
COD	134.1100	117.0050	01/09/1934		0.0	4.50	0.008	±± =====	
GSP	34.1100	1117.7200	104/1//1990	223227.2	4.0	4.60	0.008	111	35.8(57.7)
MGI	34.1000	118.1000	07/11/1855	415 0.0	0.0	6.30	0.032	V	36.5(58.7)
MGI	34.0000	118.3000	106/30/1920	350 0.0	0.0	4.00	0.005	II	36.6(58.8)
MGI	34.0000	118.3000	06/22/1920	2035 0.0	0.0	4.00	0.005	II	36.6(58.8)
MGI	34.0000	118.3000	09/03/1905	540 0.0	0.0	5.301	0.014	IV	36.6(58.8)
DMG	33.7700	1118.4800	04/24/1931	182754.8	0.0	4.401	0.007	III	36.6(59.0)
DMG	33.9330	117 3670	10/24/1943	02921 0	0 0		0.005	I TT I	36.8(59.1)
CSP	34 1300	1117 7000	03/01/1990	02321.0	1 0		0.005	<u> </u>	37 5 (60 3)
UD1 T-N	34 0000	1117 4200		1415 0 01	4.0		0.005	<u>+</u> + -	27 6 60 5
	134.0000	117.4200	09/10/1920	1415 0.0	0.0	4.30	0.006		37.6(60.5)
A-T	34.0000	1117.4200	104/12/1888	1315 0.0	0.0	4.30	0.006		37.6(60.5)
PAS	34.1360	1117.7090	06/26/1988	15 458.5	7.9	4.60	0.008	I II I	37.7(60.7)
DMG	33.9030	118.4310	11/29/1938	192115.8	10.0	4.00	0.005	II	38.0(61.2)
GSP	34.1400	117.7000	02/28/1990	234336.6	5.0	5.20	0.012	III	38.1(61.4)
GSP	34.1400	117.6900	03/02/1990	172625.4	6.0	4.60	0.008	II	38.3(61.6)
MGI	34.0000	117.4000	05/22/1907	652 0.01	0.0	4.60	0.008	III	38.4 (61.8)
MGI	33.8000	1118.5000	06/18/1915	115 5 0.01	0.0	4.001	0.005	ITTI	38.4 (61.8)
GSP	34 1500	117 7200	03/01/1990		11 0		0 008	, , TTT	38 5 (62 0)
MCT	34 1000	1119 2000	105/01/1000	11122 0 0	11.0		0.005) <u> </u>	39 9/ 62 61
MGI	134.1000	110.2000	01/02/1910		0.0		0.005	; <u> </u>	38.9(02.0)
MGI	134.1000	1110.2000	UT/2//1860	830 0.0	0.0	4.30	0.006		38.9(62.6)
MGI	34.1000	118.2000	04/21/1921	1538 0.0	0.0	4.00	0.005	II	38.9(62.6)
MGI	34.0800	118.2600	07/16/1920	18 8 0.0	0.0	5.00	0.010	III	39.5(63.6)
PAS	33.0330	117.9440	02/22/1983	21830.4	10.0	4.30	0.006	II	39.8(64.1)
PAS	34.1490	118.1350	12/03/1988	113826.4	13.3	4.90-	0.009	III	40.3(64.9)
DMG	33.7380	117.1870	04/27/1962	91232.1	5.7	4.10	0.005	III	40.4 (65.1)
MGT	34.0000	118.4000	10/01/1930	040 0.01	0.0	4.60	0.007	TT	40.6(65.4)
MGT	34 0000	1118 4000	02/22/1020		0.0		0 007		40 6(65 4)
MGT	34 0000	1110 4000	102/22/1020		0.0		0.007	; <u>+</u>	10.6(65 1)
MOT	134.0000	1110 4000	102/07/192/	429 0.0	0.0	4.00	0.007		40.0(05.4)
MGI	34.0000	1118.4000	101/29/192/	2324 0.0	0.0	4.00	0.004		40.0(65.4)
USG	33.0170	1117.8170	10//14/1986	11112.6	10.0	4.12	0.005	III	40.8(65.7)
USG	33.0170	117.8170	07/16/1986	1247 3.7	10.0	4.11	0.005	III	40.8(65.7)
DMG	34.2000	117.9000	08/28/1889	215 0.0	0.0	5.50	0.014	IV	41.0(66.0)
DMG	34.2000	117.9000	07/13/1935	105416.5	0.0	4.70	0.007	II	41.0(66.0)

	1		1	TIME			SITE	SITE	APPR	ox.
FILE	LAT.	LONG.	DATE	I (UTC)	DEPTH	I OUAKE I	ACC.	IMM I	DIST	ANCE
CODE	NORTH	WEST		H M Sec	(km)	MAG	a	ITNT I	mi	[km]
	++-		, - - -+	+	-+	,	9			[,]
DMG	134 1270	1117 5210		110 928 61	10 0		0 004	I T 1	41 21	66 3)
DMG		1118 4170	12/2//1930	1 339 0 0	10.0		0.004	<u>+</u> <u> </u>	41.2 (A1 A/	66 6)
MCT	134 2000	1110.4170	12/07/1930		0.0		0.004		41.4((0, 0)
DMC	134.2000	1117 4750	01/09/1921		10.0	4.60	0.007		41.0((7.5)
DMG	134.1100	1110 2000	07/16/1960	20 048.0	12.0	4.10	0.004		41.9(67.5)
MGI	134.1000	1110.3000	107/16/1920		0.0	4.607	0.007		41.9(67.5)
MGI	34.1000	1118.3000	107/16/1920	2127 0.0	0.0	4.60	0.007		41.9(67.5)
MGI	34.1000	118.3000	07/26/1920	1215 0.0	0.0	4.00	0.004		41.9(67.5)
MGI	134.1000	118.3000	0//16/1920	2130 0.0	0.0	4.60	0.007		41.9(67.5)
DMG	34.0330	1117.3500	04/18/1940	184343.9	0.0	4.40	0.006	11	42.0(6/.6)
DMG	134.1400	1117.5150	01/01/1965	8 418.0	5.9	4.40	0.006	1 11 1	42.2(67.8)
DMG	34.1240	111/.4800	05/15/1955	17 326.0	7.6	4.00	0.004		42.2(68.0)
T-A	34.1700	1118.1700	03/07/1888	1554 0.0	0.0	4.30	0.005		42.5(68.3)
PAS	132.9900	1117.8490	07/13/1986	14 133.0	12.0	4.60	0.006		42.6(68.6)
PAS	32.9860	1117.8440	10/01/1986	201218.6	6.0	4.00	0.004	ΙΙΙ	42.9(69.0)
GSP	32.9850	1117.8180	06/21/1995	211736.2	6.0	4.30	0.005	II	43.0(69.3)
DMG	34.1830	117.5830	10/03/1948	24628.0	0.0	4.00	0.004	I	43.1(69.4)
DMG	34.1120	117.4260	03/19/1937	12338.4	10.0	4.001	0.004	II	43.3(69.7)
DMG	34.1670	117.5330	03/01/1948	81213.0	0.0	4.70	0.007	III	43.3(69.7)
DMG	34.0000	117.2830	11/07/1939	1852 8.4	0.0	4.70	0.007	II	43.4(69.8)
DMG	34.0330	117.3170	09/03/1935	647 0.0	0.0	4.50	0.006	II	43.4(69.8)
DMG	133.9000	117.2000	12/19/1880	0 0 0.0	0.0	6.00	0.019	IV	43.6(70.2)
DMG	33.9960	117.2700	02/17/1952	123658.3	16.0	4.50	0.006	II	43.8(70.5)
PAS	34.1350	117.4480	01/08/1983	71930.4	4.6	4.10	0.004	I	43.9(70.6)
PAS	32.9710	117.8700	07/13/1986	1347 8.2	6.0	5.30	0.011	III	43.9(70.6)
DMG	34.1830	117.5480	09/01/1937	163533.5	10.0	4.50	0.006	II	43.9(70.7)
GSP	32.9700	117.8100	04/04/1990	085439.3	6.0	4.00	0.004	I	44.1(71.0)
PAS	32.9700	117.8030	07/14/1986	03246.2	10.0	4.00	0.004	I	44.1(71.0)
DMG	34.1320	117.4260	04/15/1965	20 833.3	5.5	4.50	0.006	II	44.4(71.5)
DMG	34.0000	117.2500	07/23/1923	73026.0	0.0	6.25	0.022	IV	44.9(72.2)
DMG	34.0000	117.2500	11/01/1932	445 0.0	0.0	4.00	0.004	I	44.9(72.2)
DMG	33.7000	117.1000	06/11/1902	245 0.0	0.0	4.50	0.005	II	44.9(72.2)
GSP	34.2500	117.9900	06/28/1991	170055.5	9.0	4.30	0.005	II	44.9(72.3)
DMG	34.0000	118.5000	08/04/1927	1224 0.0	0.0	5.00	0.008	III	45.1(72.5)
MGI	34.0000	118.5000	03/08/1918	1230 0.0	0.0	4.00	0.004	I	45.1(72.5)
DMG	34.0000	118.5000	06/22/1920	248 0.0	0.0	4.90	0.007	II	45.1(72.5)
MGI	34.0000	118.5000	06/23/1920	1220 0.0	0.0	4.00	0.004	I	45.1(72.5)
DMG	34.0000	118.5000	11/08/1914	1140 0.0	0.0	4.50	0.005	II	45.1(72.5)
MGI	34.0000	118.5000	11/19/1918	2018 0.0	0.0	5.00	0.008	III	45.1(72.5)
DMG	34.0000	118.5000	03/06/1918	1820 0.0	0.0	4.00	0.004	I	45.1(72.5)
PAS	32.9450	117.8310	07/29/1986	81741.8	10.0	4.10	0.004	I	45.7(73.6)
GSP	34.2620	118.0020	06/28/1991	144354.5	11.0	5.40	0.011	III	45.8(73.8)
PAS	32.9450	117.8060	09/07/1984	11 313.4	6.0	4.30	0.004	I	45.8(73.8)
PAS	34.0230	117.2450	10/02/1985	234412.4	15.2	4.80	0.007	III	46.1(74.2)
DMG	34.2110	117.5300	09/01/1937	1348 8.2	10.0	4.50	0.005	III	46.1(74.2)
PAS	34.2110	117.5300	10/19/1979	122237.8	4.9	4.10	0.004	III	46.1(74.2)
USG	34.1390	117.3860	02/21/1987	231530.1	2.6	4.071	0.004	III	46.1(74.3)
DMG	34.2000	117.5000	06/14/1892	1325 0.0	0.0	4.901	0.007	III	46.2(74.4)
PAS	32.9470	117.7360	01/15/1989	153955.2	6.0	4.201	0.004	III	46.2(74.4)
PAS	32.9330	117.8410	07/29/1986	81741.6	10.0	4.30	0.004	III	46.5(74.9)
DMG	34.1180	117.3410	09/22/1951	82239.1	11.9	4.30	0.004	II	46.60	75.1)
T-A	33.5000	117.0700	12/29/1880	7 0 0.0	0.0	4.301	0.004	III	46.8(75.3)
GSP	34.0240	117.2300	03/11/1998	121851.8	14.0	4.501	0.005	IIII	46.8(75.3)
DMG	34.1270	117.3380	02/23/1936	222042.7	10.0	4.501	0.005	IIII	47.2(76.0)

	I	1	I	I TIME		I I	SITE	SITE	APPROX.
FILE	LAT.	LONG.	I DATE	UTC)	DEPTH	OUAKE I	ACC.	MM	DISTANCE
CODE	NORTH	WEST		I H M Sec	(km)	MAG	a	ITNT. I	mi [km]
	+=-==+-				(1411)				
MGT		1117 3000	107/15/1905	12041 0 01	0.0	5 301	0 010	I TTTI	17 31 76 2)
DMC	134 1000	1117 3000	102/16/1021	12041 0.01	0.0		0.010	<u> </u>	47.3(76.2)
MCT	124 1000	1117 2000	12/10/1931		0.0		0.005	· · · ·	47.3(70.2)
MGI	34.1000	1117 2000	112/2//1901		0.0	4.601	0.005		47.3(70.2)
MGI	34.1000	117.3000	11/22/1911		0.0	4.001	0.003		47.3(70.2)
DMG	34.0430	1117.2280	104/03/1939	25044.7	10.0	4.001	0.003		4/./(/6.8)
DMG	34.1400	1117.3390	02/26/1936	93327.6	10.0	4.001	0.003		4/.9(//.1)
DMG	34.2170	1117.4670	03/25/1941	234341.0	0.0	4.00	0.003		48.1(//.5)
PAS	33.9190	118.6270	01/19/1989	65328.8	11.9	5.001	0.007		48.3(//.8)
T-A	34.0800	117.2500	10/07/1869	0 0 0.0	0.0	4.30	0.004	III	48.4(77.9)
GSP	34.1900	117.3900	12/28/1989	094108.1	15.0	4.50	0.005	II	48.9(78.6)
DMG	34.2000	117.4000	07/22/1899	046 0.0	0.0	5.50	0.011	III	49.1(79.0)
GSP	34.1680	117.3370	06/28/1997	214525.1	9.0	4.20	0.004	I	49.5(79.6)
DMG	33.9500	118.6320	08/31/1930	04036.0	0.0	5.20	0.008	III!	49.6(79.8)
DMG	34.2700	117.5400	09/12/1970	143053.0	8.0	5.40	0.010	III	49.6(79.8)
DMG	34.2670	117.5180	09/12/1970	141011.2	8.0	4.10	0.003	I	49.9(80.3)
DMG	34.2810	117.5520	09/13/1970	44748.6	8.0	4.40	0.004	I	50.1(80.5)
T-A	34.1700	117.3200	12/02/1859	2210 0.0	0.0	4.30	0.004	I (50.2(80.7)
DMG	34.3000	117.6000	07/30/1894	512 0.0	0.0	6.00	0.015	IV I	50.4(81.0)
DMG	33.5000	117.0000	08/08/1925	1013 0.0	0.0	4.50	0.004	I	50.8(81.7)
PAS	33.9330	118.6690	10/17/1979	205237.3	5.5	4.20	0.003	I	50.9(82.0)
DMG	33.7500	117.0000	06/06/1918	2232 0.0	0.0	5.00	0.007	II	51.1(82.3)
DMG	33.7500	117.0000	04/21/1918	223225.0	0.0	6.80	0.028	V	51.1(82.3)
DMG	34.3040	117.5700	05/05/1969	16 2 9.6	8.8	4.40	0.004	I	51.2(82.4)
MGI	34.1000	1117.2000	04/23/1923	2113 0.0	0.0	4.00	0.003	II	51.5(82.8)
DMG	33.8000	117.0000	12/25/1899	1225 0.0	0.0	6.40	0.020	IV	51.9(83.5)
PAS	33.9440	118.6810	01/01/1979	231438.9	11.3	5.001	0.006	III	51.9(83.5)
DMG	34.3000	117.5000	07/22/1899	2032 0.0	0.0	6.501	0.021	IVI	52.4 (84.4)
MGI	34.2000	1117.3000	04/13/1913	1045 0.0	0.0	4.001	0.003	III	52.5(84.5)
DMG	33.0000	117.3000	11/22/1800	2130 0.0	0.0	6.501	0.021	IVI	53.4 (85.9)
DMG	34.3700	117.6500	12/08/1812	15 0 0.0	0.0	7.001	0.030	V	54.2(87.3)
GSP	34.3740	117.6490	08/20/1998	234958.4	9.0	4.401	0.004	III	54.5(87.7)
DMG	33.2670	1117.0170	06/07/1935	1633 0.0	0.0	4.001	0.003	III	54.6(87.9)
DMG	34.4000	117.8000	02/24/1946	6 752.0	0.0	4.101	0.003	I II	54.9(88.4)
DMG	33.7100	116.9250	09/23/1963	144152.6	16.5	5.001	0.006	IIII	54.9(88.4)
DMG	34.0170	1117.0500	02/19/1940	112 655.7	0.0	4.601	0.004	III	55.1(88.6)
GSP	34.2310	1118.4750	03/20/1994	212012.3	13.0	5.301	0.007	IIII	55.2(88.8)
DMG	33.5000	1116.9170	11/04/1935	355 0.01	0.0	4.501	0.004	I T I	55.5(89.3)
DMG	32.8670	118.2500	02/13/1952	151337 0	0.0	4.701	0.005	I IT I	55.5(89.3)
GSP	34.2150	1118.5100	01/19/1994	140914.8	17.0	4.50	0.004		55.6(89.5)
DMG	32.8000	1117 8330	01/24/1942	214148 01	0.0		0 003		55.7(89.7)
GSP	34,2450	1118 4710	01/18/1994	155144 9	12 0		0.003	· - I	55 8 (89.8)
GSP	34.2430	1118 3890	112/06/1994	1034834 5	9.0		0.003		55.8(89.9)
DMG	34 2680	1118 4450	08/30/1964	1225737 1	15 /	1 1.001	0.003		56 2 (90 4)
CSP	34 2130	1118 5370	101/17/1994	1223757.1	18 0	1 6 701	0.000		56 6(91 0)
DMG	34.2150	1118 3310	102/09/1971	1155820 71	14 2		0.022		56 7 (91 3)
DMG	32 8500	1117 4830	102/03/19/1	42112 0	14.2		0.000		56 9 (91 6)
DMG	34 0000	1117 0000	106/30/1993		0.0		0.002	ΙΤΙ	57 0 (91 7)
DMC	34.3300	1118 3320	100/00/1071	11/1612 0	11 1		0.004		57 0 (91 7)
CSP	134 3120	1118 2020	102/03/13/1	1125657 1	7 0	1 4.101	0.003		57 1 (01 0)
DMC	33 1510	1116 0000	103/23/1334	11/2252	10.0	1 4.401	0.003	1	57 1 (01 0)
CCD	131 2110	1110.0300	06/15/1930	1142232.8	10.0		0.002		57 2/ 02 01
DMC	133 1560	1116 0060	106/16/1020	1 55016 0	10.0	1 4.201	0.003		57 2 (92.0)
CSB	34 2000	1118 1200	100/10/1938	1 005500 7	10.0		0.002	і — І І т І	57 1 (92.0)
999	JI.2770	1110.4200	101/23/1994	1000000./	0.0	, 4.ZU	0.005	, <u> </u>	57.4(32.4)

Page 8

	I	1	l	TIME		1	SITE	SITE	APPROX.
FILE	LAT.	LONG.	DATE	(UTC)	DEPTH	OUAKE	ACC.	MM	DISTANCE
CODE	NORTH	WEST		H M Sec	(km)	MAG.	a	INT.	mi [km]
	++-		+ -		- + -	+	.++		
MGI	133.8000	1116.9000	12/18/1920	1726 0.01	0.0	4.001	0.002	I – I	57.5(92.5)
MGI	33.8000	1116.9000	06/14/1918	1024 0.01	0.0	4.001	0.002	I – I	57.5(92.5)
MGI	33.8000	116.9000	04/23/1918	1415 0.01	0.0	4.00	0.002	. – .	57.5(92.5)
MGI	33.8000	1116.9000	04/29/1918		0.0	4.001	0.002	, , _	57.5(92.5)
MGI	33.2000	1117.0000	07/20/1923		0.0	4.001	0.002	, , –	57.6(92.7)
DMG	34.3610	1118.3060	02/09/1971	1141021.51	5.0	4.701	0.004	, , , т,	57.7(92.8)
GSP	34.2990	1118,4390	102/03/1994	162335 4	8.0		0 003	, ⊥, , ⊤,	57.8(92.9)
GSP	134.2870	1118.4660	01/19/1994	071406.21	11.0		0.002	· -	58.0(93.3)
DMG	134.3700	1118.3020	02/10/1971	31212.01	0.8		0.002	 I – I	58.1(93.6)
GSP	34.2920	1118.4660	01/19/1994	144635.21	6.0	4.001	0.002	, , I – I	58.2(93.7)
GSP	34.2970	1118,4580	101/21/1994	185344 6	7 0	1 4 301	0 003	, , , т,	58.3(93.7)
GSP	134.3010	1118 4520	01/21/1994	1185244 21	7.0	4.30 4.30	0.003	⊥ T	58 3 (93.8)
DMG	134.3680	1118.3140	104/25/1971	11448 6 51	-2 0	1 4.001 1 4 001	0.002	· · · ·	58.3(93.8)
DMG	34.2960	1118,4640	03/30/1971	85443 3	2.0	4.00 4 10	0.002	. – I	58.4(94.0)
GSP	134 2910	1118 4760	02/06/1994	1131926 91	11 0		0.003	· · ·	58 5 (94 2)
PAS	132.7590	1117,9060	10/18/1976	1172753 11	13.8	4.10 4.20	0.003	, , , , , ,	58 6 (94 2)
GSB	134.3000	1118.4660	01/21/1994	1183915 31	10.0	4.20 4.70	0.004	, <u> </u>	58.7(94.4)
GSP	134.2280	1118 5730	01/17/1994	1175608 21	19 0		0.004	, <u> </u>	58 7 (94 5)
DMG	34 3080	1118 4540	02/09/1971	1144346 71	6.2	4.00 5.20	0.004	, <u> </u>	58 7 (94 5)
GSP	34.2610	1118 5340	01/17/1994	1123939 81	14 0	0,20 1 50	0.000) <u> </u>	58 9 (94 9)
GSP	34.3110	1118 4560	101/17/1994	1193534 31	2 0		0.004	· · · ·	59.0(94.9)
GSP	34 2540	1118 5450	101/17/1994	1130627 91	2.0		0.002	, т , т,	59.0(94.9)
PAS	32 7560	1117 9880	101/12/1975	1212214 81	15 3	4.00 1 80	0.004	<u> </u>	59.0(94.9) 59.1(95.1)
GSP	34 3040	1118 4730	101/12/19/3	1150703 21	2 0		0.004	і <u>т</u> і	59 1 (95 2)
GSP	34.3170	1118 4550	101/17/1994	1132644 71	2.0		0.005		59 3 (95 4)
DMG	34.2730	1118 5320	01/1/1/1971	116 1 8 51	2.0		0.004	<u> </u>	59 5 (95 8)
GSB	34.3100	118 4740	101/21/1994	1184228 81	7 0		0.002	і ті	59.5(95.8)
GSP	34 2180	118 6070	101/18/1994	1113509 91	12 0		0.003	і ті І ті	59 6 (95 9)
DMG	34.2860	118 5150	01/10/1994	1145222 51	2 1		0.003	1 <u> </u>	59 6 (95 9)
GSP	34.3310	1118 4420	01/17/1994	141430 31	1 0		0.003	<u> </u>	59.7(96.0)
PAS	33.7010	116.8370	01/1/1991	2 136 31	5.0		0.002		59 9 (96 4)
DMG	34 2840	1118 5280	00/22/1979	54025 01	3.0		0.002	· · ·	59 9(96 5)
DMG	34.3570	118 4060	09/02/1971	04020.0 141950-2	11 8		0.002	 _	59.9(90.3)
GSP	34.1920	117 0950	02/05/15/1	1190104 11	7 0.		0.002	і і І Т І	60 2 (96 8)
DMG		117.0000	09/20/1994	1 154 0 01	0.01	4.00 6.00	0.004	⊥ TTT	60.2(90.0)
GSP	34 08501	1116 98901	05/20/1907	104 0.0 214900 3	3 0		0.011	<u> </u>	60.5(97.1)
GSP	34.0970	116 9960	12/05/1992	1170438 91	4 0		0.002	· · · ·	60 6 (97 5)
GSP	34.2740	118 5630	01/27/1994	171958 8	14 0		0.002	і і І Т І	60.7(97.7)
DMG	34.2650	118 5770	01/27/1994	1111432 01	1 2		0.004	<u> </u>	60 8 (97 8)
DMG	34 3870	118 3640	02/09/1971	1/3917 8	-1 6		0.002	· · ·	60 8 (97 8)
GSP	34 26901	118 5760	02/03/19/1	1125546 81	16.01		0.002	· · ·	60.9(98.0)
DMG	32 8170	118 3500	12/26/1951	1 04654 01	10.0	5 901	0.002	י ו ו דדדו	61 1 (98 3)
GSG	34 3340	118 4840	01/17/1994	223152 1	10.0		0.010	<u> </u>	61.2(98.5)
DMG	34.4110	118 3290	01/1/1971	1 5 636 01	4 7		0.003	, т , т,	61.2(98.3)
DMG	34 3960	118 3660	02/10/1971	1173855 11	6.2		0.003	· · ·	61.4(98.8)
DMG	34 35301	118 4560	02/10/1971	1 13340 51	3 3	1 4 5 0 1	0.003	і і І Т І	61 4 (98 8)
GSP	34.12001	116,9980	06/29/19921	1144126 01	⊿ ∩		0.000		61.4(98.8)
DMG	32.71701	117 8330	11/06/1050	1205516 01	0.0		0.003	· · ·	51.4(50.0) 61.5(08.0)
PAS	32 71401	117 0100	10/18/1074	1172652 40.01	15 1		0.003	·	61.7(-90.9)
DMG	32.7500	118.2000	106/25/1030	1 1 4 9 0 01	10.0		0.003	, — I I Т I	62 1 (99 9)
DMG	33.96801	116 88201	106/27/10501	1162211 11	13 0		0.003		62.1(99.9)
DMG	34 35601	118 4740	00/27/1939	12254 0 01	T2.0		0.002		$62 \cdot 1 (100 0)$
MGT	33 5000	116 8000	05/25/19/1 05/31/1017	12234 9.91	4.0		0.003		62.1(100.0)
			UU/UL/L/L/		0.0		0.002		

÷

Page	9
raye	9

	1			TIME		I I	SITE	SITE	APPROX.
FILE	I I.AT	LONG	דייער	(UTC)		Ι ΟΓΙΔΚΈ Ι	ACC	I MM I	DISTANCE
CODE		WEST	DITE	H M Soci	/lem)				mi [km]
CODE	NORTH	I WEST		н м зес	(KIII)	MAG.	g	1 1101 • 1	
	++-	+	+	+	-+		++		
MGI	33.5000	116.8000	03/30/1918	16 5 0.0	0.0	4.60	0.004	I	62.2(100.1)
MGI	33.5000	116.8000	06/02/1917	435 0.0	0.0	4.00	0.002	-	62.2(100.1)
MGI	33.5000	116.8000	11/26/1916	17 5 0.0	0.0	4.00	0.002	-	62.2(100.1)
GSB	34.3010	1118.5650	01/17/1994	204602.4	9.0	5.201	0.006	III	62.2(100.1)
GSP	34 3570	1118 4800	02/25/1994	125912 6	1 0		0 002	· - ·	62 4 (100.4)
COD	131 2700	1110 6110	01/20/100/	121656 4	2.0	1 1 301	0.002	і і І ті	62 7 (100 9)
GDI	134.2700	1110.0110	01/29/1994	121636.4	2.0	4.50	0.003	<u> </u>	02.7(100.9)
DMG	34.3920	1118.4270	02/21/19/1	/1511./	1.2	4.50	0.003	1	62.8(101.1)
DMG	34.3610	118.4870	02/10/1971	143526.7	4.4	4.20	0.002	-	62.8(101.1)
GSP	34.1800	117.0200	12/04/1991	081703.5	11.0	4.00	0.002	-	62.9(101.2)
GSB	34.3190	118.5580	01/18/1994	132444.1	1.0	4.50	0.003	I	62.9(101.2)
GSP	34.3050	118.5790	01/29/1994	112036.0	1.0	5.10	0.005	II	62.9(101.3)
DMG	34.3990	1118.4190	02/10/1971	134953.7	9.7	4.301	0.003	III	63.0(101.4)
PAS	134.3800	1118 4590	08/12/1977	21926 1	95	4 501	0.003	, I Т I	63.1(101.5)
DMG	134 1000	1118 8000	105/10/1911				0 002	· - ·	63 1 (101 6)
DMC	134.2040	1110.0000	100/10/1071	112124 6			0.002		63 2 (101 6)
DMG	134.3040	1110.4550	02/10/19/1	113134.0	0.0	4.201	0.002		63.2(101.0)
DMG	34.4110	1118.4010	02/09/19/1	14 154.0	8.0	4.20	0.002	-	63.2(101.7)
DMG	34.4110	118.4010	02/09/1971	14 150.0	8.0	4.50	0.003	I	63.2(101.7)
DMG	34.4110	118.4010	02/09/1971	14 439.0	8.0	4.10	0.002	-	63.2(101.7)
DMG	34.4110	118.4010	02/09/1971	14 444.0	8.0	4.10	0.002	-	63.2(101.7)
DMG	34.4110	118.4010	02/09/1971	14 140.0	8.0	4.10	0.002	-	63.2(101.7)
DMG	134.4110	1118,4010	02/09/1971	14 1 8.0	8.0	. 5.801	0.009	IIII	63.2(101.7)
DMG	34 4110	1118 4010	02/09/1971	114 541 0	8 0	4 101	0.002	. – I	63.2(101.7)
DMC	134 4110	1110 4010	02/09/1971	141020 0		1 5 301	0.002	, тт і	63 2(101 7)
DMC	124 4110	1110.4010		141020.0			0.000		63.2(101.7)
DMG	134.4110	1110.4010	02/09/19/1	14 838.0	8.0	4.501	0.003	_	63.2(101.7)
DMG	34.4110	1118.4010	102/09/19/1	14 8 7.0	8.0	4.20	0.002	-	63.2(101.7)
DMG	34.4110	118.4010	02/09/1971	14 159.0	8.0	4.10	0.002	-	63.2(101.7)
DMG	34.4110	118.4010	02/09/1971	14 4 7.0	8.0	4.10	0.002	-	63.2(101.7)
DMG	34.4110	118.4010	02/09/1971	14 133.0	8.0	4.201	0.002	-	63.2(101.7)
DMG	34.4110	118.4010	02/09/1971	14 446.0	8.0	4.201	0.002	-	63.2(101.7)
DMG	34.4110	118.4010	02/09/1971	14 853.0	8.0	4.60	0.003	I	63.2(101.7)
DMG	34.4110	1118.4010	02/09/1971	14 434.0	8.0	4.201	0.002	1 - 1	63.2(101.7)
DMG	134.4110	1118.4010	02/09/1971	14 550.0	80	4.10	0.002	i – i	63.2(101.7)
DMC	34 4110	1118 4010	02/09/1971	114 745 0			0.003		63 2(101 7)
DMC	124 4110	1110.4010	02/09/1971	1147300	0.0	1 4.001	0.000		62 2/101 7)
DMG	134.4110	1110.4010	02/09/19/1	14 730.0			0.002		63.2(101.7)
DMG	134.4110	1118.4010	02/09/19/1	14 231.0	8.0	4.701	0.004		63.2(101.7)
DMG	34.4110	1118.4010	02/09/19/1	14 041.8	8.4	6.40	0.015		63.2(101.7)
DMG	34.4110	118.4010	02/09/1971	14 244.0	8.0	5.80	0.009	III	63.2(101.7)
DMG	34.4110	118.4010	02/09/1971	14 2 3.0	8.0	4.10	0.002	-	63.2(101.7)
DMG	34.4110	118.4010	02/09/1971	14 346.0	8.0	4.10	0.002	-	63.2(101.7)
DMG	34.4110	118.4010	02/09/1971	14 325.0	8.0	4.40	0.003	I	63.2(101.7)
DMG	34.4110	1118.4010	02/09/1971	14 230.0	8.0	4.30	0.003	III	63.2(101.7)
DMG	34 4110	1118 4010	02/09/1971	14 8 4 0	1 8 0		0 002	I	63.2(101.7)
DMC	34 4110	1118 4010	02/09/1971	114 710 0			0.002	· - ·	63 2 (101 7)
DMC	133 0500	1116 9500	102/09/19/1	1 - 7 + 7 + 0 = 0			0.002		63.2(101.7)
DMG	133.9500	110.8500	09/28/1946	1 /19 9.0		5.001	0.005		63.3(101.9)
DMG	133.0380	1110./340	109/13/1937	221439.5	10.0	4.00	0.002		63.3(101.9)
DMG	34.3000	1118.6000	04/04/1893	1940 0.0	0.0	6.00	0.011	III	63.4(102.1)
DMG	34.3970	118.4390	02/21/1971	55052.6	6.9	4.70	0.004	I	63.5(102.1)
GSB	34.2850	118.6240	01/17/1994	135602.4	19.0	4.70	0.004	I	63.6(102.3)
DMG	33.4880	116.7770	06/12/1959	11 313.0	5.7	4.00	0.002	-	63.6(102.3)
DMG	34.4310	1118.3690	08/14/1974	144555.2	8.2	4.20	0.002	I – I	63.6(102.3)
USG	132.7700	1118.3340	106/16/1985	11027 0 7	5 0	4,14	0.002	_	63.6(102.4)
DMG	32 7180	1118 1720	104/28/1938	6 728 0	1 10 0	4 501	0.003	ΙΤΙ	63.7(102.6)
CCD	134 3740	1118 /050	101/28/1004	1200953 4			0 002		63 8 (102 7)
ODT	101.0/10	1 + + 0 + 4 9 9 0	101/20/1094	1200000.4	0.0	1 1.201	0.002	1	

	ł	I	I	I TIME I		. I	SITE	ISTTEL	APPROX.
FTT	ι τ λ α				ווחתשמ		2112		DISTANCE
FILE	LAI.	LONG.	DALE		DEFIN	QUARE	ACC.		1 Ling
CODE	NORTH	WEST		H M Sec	(km)	MAG.	g	INT.	mı [Km]
	++-	+	+	+	++	+	+		
PAS	34.1510	1116.9720	111/20/1978	655 9.51	6.1	4.301	0.003	I	63.9(102.8)
DMG	34 1670	1116 9830	10/16/1951	11241 5 01	0 0		0 002		64 0(103 0)
COD	134.2450	110.5050	10/10/1991	1241 0.01	0.0	4.001	0.002	і ; і ті	64.1(103.2)
GSB	134.3450	118.5520	101/24/1994	041518.8	6.0	4.801	0.004		64.1(103.2)
DMG	34.1330	116.9500	06/10/1938	1440 0.0	0.0	4.00	0.002	-	64.2(103.3)
DMG	34.4330	118.3980	02/09/1971	144017.4	-2.0	4.10	0.002	-	64.5(103.8)
DMG	34.4260	118.4140	02/10/1971	518 7.2	5.8	4.50	0.003	I	64.5(103.8)
DMG	34.4280	118.4130	04/01/1971	15 3 3.6	8.0	4.10	0.002	-	64.6(103.9)
DMG	34.3990	1118.4730	03/09/1974	05431.9	24.4	4.701	0.004	III	64.6(103.9)
DMG	33 6500	1116 7500	09/05/1950	191956 0	0.0	4.801	0.004	іті	64.6(104.0)
CSP	134 1210	1116 9290	109/16/1999	1133440 2	6.0		0 004	, -, , , ,	64 8(104 2)
GGF	134.1210	1116.9200		101010 01	0.0		0.004	1 <u> </u>	64.0(104.2)
GSP	34.1120	1116.9200	110/01/1998	1181810.0	4.0	4.70	0.004		64.0(104.3)
DMG	32.6800	118.0770	10/28/19/3	22 0 2.7	8.0	4.50	0.003		65.1(104.7)
GSP	33.6500	116.7400	12/02/1989	231647.8	14.0	4.20	0.002	-	65.2(104.9)
GSP	32.6810	118.1090	06/20/1997	043540.5	6.0	4.70	0.004	I	65.4(105.2)
GSP	32.6850	118.1380	06/20/1997	053855.0	6.0	4.20	0.002	-	65.5(105.3)
DMG	33,0000	1117.0000	03/03/1906	2025 0.0	0.0	4.501	0.003	III	65.5(105.4)
MGT	33 0000	1117 0000	112/29/1914		0.0		0 002	I – I	65.5(105.4)
MCT	133 0000	1117 0000	100/21/1056	1 7 2 0 0 0	0.0		0.004	і і І Т І	65 5(105 4)
MGI	133.0000	1110 5710	109/21/1000	1011010.0	0.0		0.004	_ 	CE C(105.4)
GSB	134.3600	118.5/10	101/19/1994	044048.0	2.0	4.50	0.003	· · ·	65.0(105.5)
DMG	34.5190	118.1980	08/23/1952	10 9 7.1	13.1	5.00	0.004		65./(105./)
PAS	33.6300	119.0200	10/23/1981	172816.9	12.0	4.60	0.003	I	66.0(106.2)
GSB	34.3330	118.6230	01/18/1994	072356.0	14.0	4.30	0.002	-	66.0(106.2)
DMG	34.1000	116.8830	10/24/1935	1451 0.0	0.0	4.50	0.003	I	66.2(106.5)
DMG	34,1000	1116.8830	110/24/1935	11452 0.0	0.0	4.501	0.003	II	66.2(106.5)
DMG	34 1000	1116 8830	110/24/1935	11527 0 0	0 0		0.002	. – I	66.2(106.5)
CSP	134 3790	1119 5610	101/10/1004	1152316 0			0.004	іті	66 3 (106 7)
DMC	134.3750	1110.0010	01/10/1094	1105441 7	. 0 1		0.004		66 3(106 7)
DMG	134.4460	1118.4360	02/10/19/1	1185441./	8.1	4.201	0.002		00.3(100.7)
GSP	34.3/90	118.5630	01/18/1994	003935.0	1.0	4.40	0.003		66.4(106.8)
GSP	33.6320	116.7190	07/19/1999	220927.5	14.0	4.20	0.002	1 - 1	66.4(IU6.8)
DMG	133.9670	116.8000	09/07/1945	153424.0	0.0	4.30	0.002	-	66.4(106.9)
PAS	34.1980	116.9590	04/01/1978	105227.4	8.0	4.00	0.002	-	66.4(106.9)
PAS	34.4630	118.4090	09/24/1977	212824.3	5.0	4.20	0.002	-	66.6(107.2)
DMG	34.4570	1118.4270	102/09/1971	161926.5	-1.0	4.201	0.002	i – I	66.7(107.4)
DMG	34 3440	1118 6360	02/09/1971	1113436 1	-2 0	1 4 901	0 004	І Т І	67.1(107.9)
CSD	134 0400	1110.0000	102/10/1005	1212410 1	1 15 0	1 1 301	0.002		67 1 (108 0)
GOF	134.0490	1110.9150	102/19/1995	1212410.1	1 1 2 0		0.002		67 3(109 2)
GSP	34.3620	1118.6150	103/20/1996	10/3/59.8	13.0	4.10	0.002		67.3(100.2)
GSP	34.1/80	116.9220	06/28/1992	170131.9	13.0	4.70	0.003		67.3(108.3)
GSB	34.3580	118.6220	01/18/1994	040126.8	1.0	4.50	0.003	II	67.3(108.3)
DMG	34.1800	116.9200	01/16/1930	02433.9	0.0	5.20	0.005	III	67.5(108.5)
DMG	34.1800	116.9200	01/16/1930	034 3.6	0.0	5.10	0.005	II	67.5(108.5)
DMG	34.5650	118.1130	02/28/1969	45612.4	5.3	4.30	0.002	-	67.6(108.7)
GSP	34.3590	1118 6290	01/24/1994	055024 3	12.0	4.301	0.002	i – i	67.6(108.8)
CSP	34 3630	1118 6270	101/24/1994	1055421 1			0 002	, I – I	67 7 (109 0)
CSC	134.3030	1110.0270	101/24/1994	1200205 4			0.002		67 8(109 2)
656	134.4080	1116.5590	101/1//1994	1200205.4	0.0	4.001	0.002	-	(7.0(109.2))
DMG	33.91/0	1116./500	101/25/1933	11444 0.0	0.0	4.00	0.002	_	01.9(109.3)
DMG	33.9760	1116.7750	10/17/1965	94519.0	17.0	4.90	0.004	I I	68.U(109.4)
PAS	34.3470	118.6560	04/08/1976	152138.1	14.5	4.60	0.003	I	68.0(109.4)
DMG	33.4830	116.7000	12/28/1948	125341.0	0.0	4.00	0.002	-	68.0(109.5)
PAS	33.6370	119.0560	10/23/1981	191552.5	6.3	4.601	0.003	II	68.0(109.5)
GSP	134.3740	1118,6220	01/17/1994	155410 8	12.0	4,801	0.004	II	68.2(109.7)
GSB	134 3430	1118 6660	101/17/100/	1234925 4	1 8 0	1 4 301	0.002	. –	68.2(109.7)
DMC	133 0730	1116 7600	106/10/10/4	1111501 0		1 4 001	0.002		68 2/100 P
DMG	133.9/30	1110.7090	100/10/1944	1111331.9	1 11 0	4.00	0.002		(00.2(109.0))
GSP	134.3/80	1118.0180	101/19/1994	1211144.9	i 11.0	1 5.10	0.005	L T	00.2(109.8)

Page 11

			-			- -	SITE	SITE	APPROX.
FILE	LAT.	LONG.	DATE	(UTC)	DEPTH	OUAKE	ACC.	MM	DISTANCE
CODE	NORTH	WEST	1	H M Sec	(km)	MAG.	q	INT.	mi [km]
	++-	-- +	+	+	++		++		
PAS	32.6250	118.0090	07/11/1981	215029.4	5.0	4.30	0.002	-	68.2(109.8)
DMG	33.9330	116.7500	08/06/1938	228 0.0	0.0	4.00	0.002	-	68.3(109.9)
DMG	33.9330	116.7500	10/28/1944	183016.0	0.0	4.40	0.003	-	68.3(109.9)
GSP	34.3680	118.6370	01/17/1994	194353.4	13.0	4.10	0.002	-	68.4(110.0)
GSG	34.3040	118.7220	01/17/1994	221922.3	10.0	4.00	0.002	-	68.4(110.1)
DMG	34.3800	118.6230	10/29/1936	223536.1	10.0	4.00	0.002	-	68.5(110.2)
GSP	34.3260	118.6980	01/17/1994	233330.7	9.0	5.60	0.007	II	68.5(110.3)
GSP	32.9750	118.7910	03/04/1992	190627.0	6.0	4.20	0.002	1 - 1	68.6(110.4)
DMG	33.8000	116.7000	08/11/1911	1820 0.0	0.0	4.00	0.002	-	68.7(110.5)
DMG	33.8000	116.7000	08/11/1911	2340 0.0	0.0	4.50	0.003	I	68.7(110.5)
DMG	34.0290	116.7870	104/30/1954	03623.9	11.1	4.20	0.002	-	68.8(110.7)
DMG	34.0170	118.9670	04/16/1948	222624.0	0.0	4.70	0.003	I	68.9(110.8)
PAS	33.4200	116.6980	06/05/1978	16 3 3.9	11.9	4.40	0.003	-	68.9(110.8)
GSP	34.3970	118.6090	07/22/1999	095724.0	11.0	4.00	0.002	~	68.9(110.9)
GSP	34.1410	116.8570	09/19/1997	223714.5	10.0	4.10	0.002	-	68.9(110.9)
GSP	34.3040	118.7370	01/19/1994	091310.9	13.0	4.10	0.002	-	69.0(111.1)
DMG	34.2670	116.9670	08/29/1943	51630.0	0.0	4.00	0.002	-	69.1(111.2)
DMG	34.2670	116.9670	08/29/1943	34513.0	0.0	5.50	0.006	II	69.1(111.2)
DMG	34.2670	116.9670	08/29/1943	35754.0	0.0	4.00	0.002	-	69.1(111.2)
MGI	34.2000	116.9000	10/10/1915	5 6 0.0	0.0	4.00	0.002	-	69.2(111.3)
DMG	34.0140	116.7710	06/10/1944	111150.5	10.0	4.50	0.003	II	69.2(111.3)
GSP	34.3770	118.6490	04/27/1997	110928.4	15.0	4.80	0.003	I	69.3(111.5)
DMG	33.4500	116.6830	04/25/1955	25515.0	0.0	4.00	0.002	-	69.3(111.6)
PAS	33.5580	116.6670	06/15/1982	234921.3	12.2	4.80	0.003	III	69.4(111.8)
DMG	33.9500	116.7330	04/26/1942	151023.0	0.0	4.00	0.002	-	69.6(112.0)
GSP	32.6260	1118.1510	06/20/1997	080413.6	6.0	4.60	0.003	II	69.6(112.0)
GSP	34.3690	118.6720	04/26/1997	103730.7	16.0	5.10	0.004	III	69.7(112.2)
PAS	34.0540	118.9640	04/13/1982	11 212.2	16.6	4.00	0.002		69.8(112.3)
GSP	34.1630	116.8550	06/28/1992	1144321.0	6.0	5.30	0.005		69.9(112.4)
PAS	34.0160	118.9880	10/26/1984	172043.5	13.3	4.60	0.003		69.9(112.5)
DMG	34.0000	119.0000	09/24/1827	4 0 0.0	0.0	7.00	0.020		70.1(112.9)
MGI	34.0000	119.0000	12/14/1912	0 0 0.0	0.0	5.701	0.007	11	70.1(112.9)
GSP	34.3540	1118.7040	105/01/1996	1194956.4	14.0	4.10	0.002		70.2(112.9)
DMG	134.1000	1116.8000	110/24/1935	11448 7.6		5.10	0.004		70.3(113.2)
DMG	133.9170	1116.7000	111/17/1943	1112841.0			0.003		70.7(113.7)
GSP	34.1950	1110.8620	108/17/1992	204152.1	11.0		0.005	11	70.0(113.9)
DMG	34.3330	117.0000	102/2//1942	1 1 853.0		4.001	0.002		70.0(113.9)
DMG	132.5830	1117.8000	104/19/1939	1 741 0.0		4.50	0.003		70.0(113.9)
DMG	133.6040	1116 7010	103/25/1956	332 2.3		4.20	0.002		70.8(114.0)
DMG	34 1000	116.7210	106/12/1944	104534.7	10.0		0.004		70.8(114.0)
GSP	34.1980	110.8620	108/18/1992	1094640.7	12.0	4.20	0.002		70.9(114.1)
GSP	134.3030	1110.7000	101/19/1994	1044314.5	1 12.0	4.10	0.002	- T	70.9(114.1)
GSP	134.3940	1116 0120	106/20/1995	1170557 5			0.004		70.9(114.1)
GDE	134.2360	116.9120	106/20/1992	1 55220 5			0.003		71.0(114.2)
DMC	134.2400	1110 5010	100/23/13/9	1 7/622 4	1 15 1		0.003		71 1(114 1)
MCT	134.4030	1116 9000	106/22/1010	1 557 0 0	1 10.1		0.002		71 1(114 4)
COD	31 3770	1110.0000	100/22/1918	1004300.0			0.002		71 1(114 - 4)
PAG	134.2/30	1116 2060	101/10/1994	1 03/11 4	1 II.U	1 4 901	0.003		71 2(114 5)
LAD	134.1630	1116 9270	106/28/1002	1150/51 5					71 2(114 6)
PAG	134 2/00	1116 9000	106/30/1992	1 7 353 0	1 5 6		0.002		71.2(114.6)
DVG	133 0760	1116 7130	100/20/100/	1 81/36 6	1 1/ 2	1 4 30	0.003	_	71 3(114 7)
PAS	133.6710	119.1110	109/04/1981	1155050.3	5.0	5.30	0.005	I II I	71.3(114.7)

· •

	-- -	--				 -	SITE	ISITE!	APPROX.
FILE	LAT.	LONG.	DATE	(UTC) $ $	DEPTH	OUAKE	ACC.	MM	DISTANCE
CODE	NORTH	WEST		H M Sec	(km)	MAG.	g	INT.	mi [km]
	++-	+	+	+	-+	+	++		
MGI	32.8000	117.1000	05/25/1803	0 0 0.0	0.0	5.00	0.004	I	71.4(114.9)
DMG	33.4300	119.0960	10/31/1969	103929.0	7.3	4.80	0.003	I	71.4(115.0)
DMG	33.5330	116.6330	09/21/1942	7 754.0	0.0	4.00	0.002	<u>-</u>	71.5(115.1)
GSB	34.3790	118.7110	01/19/1994	210928.6	14.0	5.50	0.006	III	71.7(115.4)
DMG	33.9940	116.7120	06/12/1944	111636.0	10.0	5.30	0.005	III	71.8(115.5)
DMG	33.5080	116.6310	08/11/1967	05711.4	10.7	4.10	0.002	-	71.8(115.5)
DMG	33.9810	116.7020	06/12/1944	222119.5	10.0	4.20	0.002	-	72.0(115.8)
DMG	33.4670	116.6330	02/20/1934	1035 0.0	0.0	4.001	0.002	-	72.0(115.9)
GSP	33.0700	116.8000	12/04/1991	071057.5	15.0	4.201	0.002	-	/2.1(116.1)
DMG	33.2000	116.7200	05/12/1930	172548.5	0.0	4.20	0.002		72.1(110.1)
DMG	34.0000	116./000	108/25/1944	/3025.0	0.0	4.201	0.002		72.0(110.0)
GSN	134.2030	1116 0440	07/09/1992	120030.71	5.0		0.013	I T I	72.7(117.0) 72.8(117.1)
DMG	33 9900	1119 0580	107/09/1992	023435.0 164335.4		4.10; 1 / 101	0.002		72.0(117.1) 73 0(117 4)
GSP	33.9900	1116 8460	107/10/1992	1012940 01			0.002	· · ·	73 0(117.4)
PAS	133 9790	1116 6810	12/16/1988		8 1	1 4 801	0.002	і ті	73.1(117.6)
GSP	134.5000	1118.5600	107/05/1991	174157.11	11.0	4.101	0.002		73.1(117.7)
GSP	34.1830	1116.8020	06/28/1992	1192637.61	1.0	4.001	0.002	i – i	73.1(117.7)
DMG	33.2000	1116.7000	01/01/1920	235 0.0	0.0	5.001	0.004	III	73.2(117.8)
DMG	33.3390	1119.1040	10/24/1969	202642.5	-1.8	4.70	0.003	III	73.3(117.9)
DMG	34.3200	116.9250	04/18/1968	174213.4	4.7	4.001	0.002	-	73.3(118.0)
DMG	34.1170	116.7500	08/22/1942	125913.0	0.0	4.00	0.002	-	73.4(118.1)
MGI	34.3000	116.9000	12/01/1915	14 5 0.0	0.0	4.00	0.002	-	73.5(118.2)
PAS	32.6270	117.3770	06/29/1983	8 836.4	5.0	4.60	0.003	I	73.5(118.2)
GSP	34.2390	116.8370	07/09/1992	014357.6	0.0	5.30	0.005	II	73.7(118.6)
MGI	32.7000	117.2000	04/19/1906	028 0.0	0.0	4.30	0.002	-	73.7(118.6)
MGI	32.7000	117.2000	09/08/1915	742 0.0	0.0	4.00	0.002	-	73.7(118.6)
MGI	32.7000	117.2000	05/20/1920	1330 0.0	0.0	4.00	0.002	-	73.7(118.6)
DMG	32.7000	117.2000	105/27/1862	20 0 0.0	0.0	5.90	0.008	II	73.7(118.6)
DMG	34.0650	119.0350	02/21/1973	144557.3	8.0	5.90	0.008	II	73.8(118.7)
DMG	33.9590	1116.6510	09/23/1949	214440.1	12.2	4.00	0.002	1 - 1	74.2(119.4)
DMG	33.8000	116.6000	09/10/1931	436 0.0		4.00	0.002		74.3(119.6)
DMG	133.5060	116.5850	105/21/196/	1212254.4	1 19.4	4.70	0.003		74.4(119.0)
DMC	34.1300	1116 9090	111/20/1992	ZIZZ04.4 2251 5 5		1 4.001	0.003		74.0(120.1)
CSP	134.3370	1116 9110	106/29/1902	12551 5.5		1 4.301	0.002		74.8(120.3)
DMG	33 4670	1116 5830	103/26/1937				0.002	- I	74.9(120.5)
DMG	133.4670	1116.5830	103/27/1937	528 0 0		4.00	0.002		74.9(120.5)
DMG	33.4670	1116.5830	103/27/1937	742 0.0	0.0	4.501	0.002	. –	74.9(120.5)
DMG	33.4670	1116.5830	01/04/1938	029 0.0	0.0	4.501	0.002	. – .	74.9(120.5)
DMG	34.3120	116.8790	01/31/1972	155 4.2	8.0	4.001	0.002	1 -	74.9(120.5)
PAS	33.9890	116.6490	07/17/1986	203515.0	6.2	4.00	0.002	-	75.0(120.7)
PAS	33.9910	116.6490	07/17/1986	215445.2	7.4	4.40	0.002	-	75.1(120.8)
DMG	34.3240	116.8850	12/01/1962	03548.8	9.6	4.30	0.002	-	75.2(121.0)
DMG	34.2290	116.7950	05/11/1956	163050.5	13.3	4.70	0.003	I	75.2(121.1)
GSP	34.3400	116.9000	11/27/1992	160057.5	1.0	5.30	0.005	I	75.3(121.1)
GSP	34.3620	116.9230	12/07/1992	033331.5	1.0	4.00	0.002	-	75.3(121.3)
DMG	33.5830	119.1830	02/10/1952	135055.0	0.0	4.00	0.002	-	75.4(121.3)
DMG	32.5290	118.0820	05/26/1973	234633.3	8.0	4.30	0.002		75.4(121.3)
DMG	34.1000	116.7000	02/07/1889	520 0.0	0.0	5.30	0.005	I	75.4(121.3)
DMG	33.5340	1116.5610	09/23/1956	112441.9	12.2	4.301	0.002	-	/5.6(121.7)
PAS	34.0310	1116.6570	07/08/1986	92412.8	6.0	4.40	0.002	~	/5.7(121.7)
DMG	34.3250	1116.8750	112/02/1962	04138.4	6.7	4.40	0.002	- 1	/5./(121.8)

Page 13

,

	J	1	ł	TIME			SITE	SITE	APPROX.
FILE	LAT.	LONG.	I DATE	(UTC)	DEPTH	OUAKE	ACC.	MM	DISTANCE
CODE	NORTH	WEST		H M Sec	(km)	MAG.	a	INT.	mi [km]
	++-	+ - -	+	+	-+	+	·++		
DMG	34.3330	116.8830	10/14/1943	142844.0	0.0	4.501	0.002	-	75.7(121.8)
GSP	34.3610	116.9130	12/04/1992	125942.1	0.0	4.201	0.002	i – i	75.7(121.8)
PAS	33.5200	1116.5580	08/02/1975	014 7.7	13.4	4.70	0.003	I I I	75.9(122.1)
GSP	34.2190	1116.7710	07/21/1992	211029.0	1.0	4.10	0.002	i – i	76.0(122.3)
DMG	34.3250	1116.8650	10/29/1962	24253.9	8.6	4.801	0.003	i II	76.1(122.5)
GSP	34.2070	1116.7570	06/28/1992	161719.2	3.0	4.201	0.002	· -	76.2(122.6)
GSP	34.2110	1116.7600	06/28/1992	152429.3	6.0	4.501	0.002	i - i	76.2(122.6)
GSP	134.3640	1116.9040	111/27/1992	1183225.0	1.0	4.101	0.002	. – I	76.2(122.7)
PAS	33.9670	1116.6170	07/08/1986	155526.2	6.0	4.001	0.002	. – I	76.2(122.7)
PAS	33.9670	1116.6170	07/08/1986	102240.6	6.0	4.401	0.002	-	76.2(122.7)
GSP	134.3770	1116.9180	112/04/1992	052511 2	2.0	4.801	0.003	ίτι	76.3(122.7)
DMG	33.4170	1116.5670	12/22/1950	2 536.0	0.0	4.001	0.002	· - ·	76.3(122.8)
т-А	32,6700	1117.1700	104/15/1865	840 0.0	0.0	4.30	0.002	-	76.4(122.9)
т-А	132,6700	1117.1700	105/24/1865			5.001	0.003	ΙΤΙ	76.4(122.9)
т-А	132.6700	1117.1700	112/00/1856			5.001	0.003	I I I	76.4(122.9)
т-А	132,6700	117,1700	01/25/1863			4.301	0.002	, _	76.4(122.9)
Т-А	132.6700	1117.1700	10/21/1862		0.0	5.001	0.003	і ті	76.4(122.9)
PAS	132.6790	1117.1510	106/18/1985	1 32228 7	1 5 7	4.001	0.002	· - ·	76.4(123.0)
DMG	134,4330	1116,9830	104/18/1945	1 458 2 0		4.30	0.002	. – I	76.5(123.1)
DMG	133.4000	1116.5670	102/04/1953	43616 0		4.301	0.002	i – i	76.5(123.2)
GSP	134.3200	1116.8500	10/27/1998	1154017 1	4 0	4.10	0.002	-	76.5(123.2)
DMG	34.3070	1116 8350	108/28/1950	194526 4	1 11 7	4.20	0.002	. – I	76.6(123.3)
GSP	34.3690	1116 8970	112/04/1992	1020857 5	1 3 0	5.30	0.004	і ті	76.8(123.5)
GSP	134.3220	1116 8460	109/20/1999	1070249 2	1 2 0	4.201	0 002		76.8(123.6)
GSP	134.3230	1116.8440	10/27/1998	1010840.7	5 0	4.90	0.003	і ті	76.9(123.8)
PAS	133 9060	1119 1660	105/23/1978	91650 8			0 002	· -	77.0(124.0)
DMG	134.3500	1116.8670	10/15/1943	11650 1 0		4.50	0.002	i – i	77.1(124.1)
DMG	134.2500	1116.7700	103/16/1956	1203344 3	0.8	4.001	0.002	. – I	77.2(124.3)
DMG	134 4000	1116 9170	102/01/1942	16 334 0		4.50	0 002	. – I	77.4(124.6)
DMG	34,4000	116.9170	102/01/1942	1151828.0		4.50	0.002	i – i	77.4(124.6)
DMG	134.4000	1116.9170	101/25/1942	1215133.0		4.00	0.002	. – i	77.4(124.6)
DMG	134,4000	1116.9170	102/01/1942	1151555 0		4.00	0.002	~	77.4(124.6)
DMG	34.5290	1118 6440	102/07/1956	21656 5	16.0	4.20	0 002	. – I	77.5(124.6)
DMG	133.8980	1116.5690	11/17/1964	1145228.2	1 10 3	4.00	0.002	-	77.5(124.7)
GSP	134 3700	1116 8800	111/29/1992	1142120.5	1 3 0		0 002	. – 1	77.5(124.7)
PAS	33,9980	1116 6060	107/08/1986	92044 5	117	5.60	0.006	i TT I	77.5(124.8)
GSP	134.2980	116.8040	107/05/1992	200303 1	1 3 0	4.00	0.002		77.6(124.9)
GSP	134.2730	1116.7740	08/24/1992	1135146.0	1 1.0	4.30	0.002	. – I	78.0(125.5)
PAS	134.3220	1116.8150	108/29/1985	1 759 8 7	6 1	4.10	0.002	~	78.2(125.8)
PAS	33.9530	1116 5720	10/15/1986	22847 8	87		0 003	i – i	78.4(126.2)
DMG	34,4170	1118 8330	06/01/1946	111 631 0		4 10	0.002	I – I	78.4(126.2)
DMG	134 2640	1116 7550	03/16/1956	1203613 6	1 3 3	4 00	0 001	· - ·	78.5(126.3)
GSP	34 1110	1116 6460	106/28/1992	1140928 8		4 10	0 002	· - ·	78.5(126.3)
MGT	133 2000	1116 6000	100/20/1992	1748 0 0		1 5 30	0.002	I T	78.6(126.4)
DMG	134.2990	1116.7840	103/18/1956	24217 3	63	4 40	0.002	- i	78.6(126.4)
PAS	133.5010	1116 5130	102/25/1980	1104738 5	1 13 6	1 5 50	0 005	I TT I	78.6(126.5)
DMG	34.3170	1116.8000	108/12/1950	21717 0		4 30	0.002	_	78.6(126.5)
PAS	133.4840	116.5130	108/11/1976	152455 5	15 /	4 30	0.002	-	78.7(126.7)
DMG	133.2910	1119,1930	10/24/1969	82912 1	1 10 0	5 10	0.004	Т	79.1(127.3)
PAS	133.9870	1116.5690	107/09/1986	1 01232 1		4 40	0.002	· - ·	179.3(127.6)
DMG	133 5000	1116 5000	109/30/1916			1 5 00	0 002	ΙT	1 79.3(127.7)
DMG	133.4830	1116.5000	102/15/1951	1104759 0		4 80	0.003	I T	1 79.5(127.9)
DMG	133.4830	1116.5000	02/15/1951	1104957 0	0.0	4.80	0.003	I T	79.5(127.9)

۰.

		--	--	 TIME	-	 	SITE	SITE	APPROX.
FILE	LAT.	LONG.	DATE	(UTC)	DEPTH	QUAKE	ACC.	MM	DISTANCE
CODE	NORTH	WEST		H M Sec	(km)	MAG.	g	INT.	mi [km]
	++-	+	+	+ -	-++	+	++		
DMG	33.1000	116.6330	02/08/1952	174028.0	0.0	4.001	0.001	-	79.6(128.1)
GSP	34.2500	116.7190	06/29/1992	164141.9	1.0	4.901	0.003	I	79.6(128.2)
DMG	34.5860	118.6130	02/07/1956	31638.6	2.6	4.60	0.002	-	79.8(128.4)
DMG	34.3060	1116.7590	03/16/1956	202933.6	1.3	4.80	0.003	I	80.0(128.8)
GSP	34.2750	116.7300	07/01/1992	204617.8	1.0	4.20	0.002	-	80.1(128.9)
PAS	32.6150	117.1520	10/29/1986	23815.3	14.6	4.10	0.002	-	80.2(129.0)
GSP	34.2810	116.7310	07/01/1992	205356.8	1.0	4.00	0.001	1 – 1	80.3(129.2)
DMG	33.5000	116.4830	02/23/1941	183614.0	0.0	4.50	0.002	-	80.3(129.2)
DMG	33.4000	116.5000	10/11/1918	4 0 0.0	0.0	4.00	0.001	-	80.3(129.3)
DMG	33.4200	116.4900	03/29/1937	17 316.8	10.0	4.00	0.001	-	80.6(129.8)
DMG	33.1500	116.5830	12/02/1935	319 0.0	0.0	4.00	0.001	-	80.8(130.0)
DMG	34.0650	116.5740	08/26/1959	53250.2	16.7	4.30	0.002	-	80.9(130.2)
DMG	34.4170	116.8500	02/11/1932	231120.0	0.0	4.00	0.001	-	81.0(130.3)
MGI	33.1000	116.6000	02/05/1922	1915 0.0	0.0	4.00	0.001	-	81.3(130.9)
MGI	33.1000	116.6000	08/10/1921	19 6 0.0	0.0	4.00	0.001	-	81.3(130.9)
MGI	33.1000	116.6000	05/11/1915	1145 0.0	0.0	4.00	0.001	-	81.3(130.9)
MGI	33.1000	116.6000	02/16/1915	1330 0.0	0.0	4.001	0.001	-	81.3(130.9)
MGI	33.1000	116.6000	03/04/1915	1250 0.0	0.0	4.00	0.001	1 - 1	81.3(130.9)
MGI	33.1000	116.6000	05/28/1917	1017 0.0	0.0	4.00	0.001	-	81.3(130.9)
MGI	33.1000	116.6000	08/10/1921	2151 0.0	0.0	4.00	0.001	-	81.3(130.9)
MGI	33.1000	116.6000	02/09/1920	220 0.0	0.0	4.00	0.001	-	81.3(130.9)
MGI	33.1000	116.6000	08/19/1917	710 0.0	0.0	4.00	0.001	– I	81.3(130.9)
GSP	34.2740	116.6920	07/01/1992	170715.1	4.0	4.20	0.002	-	81.8(131.7)
DMG	34.3360	116.7420	03/16/1956	233456.4	1.7	4.40	0.002	-	82.0(132.0)
T-A	34.4200	118.9200	03/29/1917	8 6 0.0	0.01	4.30	0.002	-	82.1(132.1)
GSP	33.5100	116.4500	02/18/1990	155259.9	9.01	4.10	0.001	-	82.1(132.2)
DMG	34.4360	116.8340	07/14/1973	8 020.1	8.0	4.80	0.003	-	82.5(132.8)
PAS	33.4830	116.4380	07/02/1988	02658.2	12.6	4.00	0.001	-	83.0(133.6)
DMG	32.8000	116.8000	10/23/1894	23 3 0.0	0.0	5.70	0.005	II	83.3(134.1)
MGI	32.8000	116.8000	08/14/1927	1448 0.0	0.0	4.60	0.002	-	83.3(134.1)
DMG	33.5010	116.4290	02/23/1971	0 739.2	8.0	4.20	0.002	-	83.4(134.2)
DMG	33.4670	116.4330	05/12/1939	1925 2.2	0.0	4.50	0.002	-	83.4(134.3)
PAS	33.4580	116.4340	02/12/1979	44842.3	3.9	4.20	0.002	-	83.5(134.3)
DMG	34.0170	116.5000	07/25/1947	51752.0	0.01	4.30	0.002	-	83.7(134.7)
DMG	34.0170	116.5000	07/26/1947	23 425.0	0.0	4.50	0.002	-	83.7(134.7)
DMG	34.0170	116.5000	07/26/1947	24941.0	0.01	5.10	0.003	II	83.7(134.7)
DMG	34.01/0	116.5000	07/26/1947	12415.0	0.0	4.20	0.002	-	83.7(134.7)
DMG	34.01/0	116.5000	07/25/1947	04631.0	0.01	5.001	0.003	III	83.7(134.7)
DMG	34.0170	116.5000	07/25/1947	61949.0	0.0	5.20	0.004		83.7(134.7)
DMG	34.0170	116.5000	07/25/1947	15647.0	0.0	4.60	0.002	-	83.7(134.7)
DMG	34.0170	116.5000	07/25/1947	/5/30.0	0.01	4.201	0.002	i – I	83.7(134.7)
DMG	34.0170	116.5000	07/24/194/	225341.0	0.01	4.30	0.002		83.7(134.7)
DMG	34.0170	116.5000	07/24/1947	221046.0	0.01	5.50	0.005	1	83.7(134.7)
DMG	34.0170	116.5000	08/01/194/	17 137.0	0.01	4.10	0.001	-	83.7(134.7)
DMG		116.5000	07/24/194/1	225426.01	0.01	4.901	0.003		83.7(134.7)
DMG	34.0170 34.0170	116.5000	07/30/1947	52217.0	0.01	4.201	0.002	-	83.7(134.7)
DMC	34.0170	116 5000	07/08/194/	04/45.0	0.01	4.00	0.001	-	03.7(134.7)
DMC	34.0170	116 5000	07/20/194/	162615 01	0.01	4.50	0.002		03./(134./)
DMC	34.0170	116 5000	07/29/194/	103013.0	0.01	4.20	0.002	-	03./(134./)
DMC	133 360VI	116 4440	07/20/194/	232026 7	10.01	4.10	0.001		03./(134./) 03.0/12E 01
DMC	33 1060	1116 /210	03/25/193/	232026./	10.0	4.00	0.001		03.3(135.U) 04 5(136 A)
MGT	33.4200	116 6000	05/25/193/	20 4 0.3	10.01	4.001	0.001		QA 6/126 1)
1101	55.0000	110.0000	00/11/121/1	554 0.01	0.01	4.001	0.001		04.0(100.1)

EARTHQUAKE SEARCH RESULTS

				TIME		I I	SITE	SITE	APPROX.
FILE	LAT.	LONG.	DATE	(UTC)	DEPTH	OUAKE I	ACC.	MM	DISTANCE
CODE	I NORTH	WEST	2	H M Sec	(km)	MAG	a	ו דאר ו	mi [km]
	++-	+			-+		+		
DMC	133 8800	116 1370	101/17/1950	1610 0 2	22.2				84 6(136 1)
DMC	122 1670	1116 5000	04/1/1909	1 22552 71	22.2	4.20	0.002	1 – I 1 – I	04.0(130.1)
DMG	133.1670	1116.5000	106/23/1932	22552.7	0.0	4.001	0.001	! - !	04.0(130.4)
DMG	33.1670	1116.5000	06/23/1932	23037.1	0.0	4.001	0.001	~	84.8(136.4)
DMG	33.41/0	1116.4170	01/02/1943	141118.0	0.0	4.50	0.002	-	84.8(136.5)
DMG	34.1180	119.2200	03/18/1957	185628.0	13.8	4.70	0.002	-	84.9(136.6)
DMG	33.3330	116.4330	02/12/1954	94428.0	0.0	4.50	0.002	-	85.1(136.9)
DMG	33.1100	116.5230	01/24/1957	205449.9	3.9	4.60	0.002	-	85.1(136.9)
DMG	34.0000	116.4670	12/06/1948	246 8.0	0.0	4.30	0.002	-	85.1(137.0)
DMG	34.0000	116.4670	12/05/1948	05057.0	0.0	4.40	0.002	-	85.1(137.0)
PAS	34.3780	119.0350	04/03/1985	4 449.8	27.9	4.001	0.001	-	85.2(137.1)
DMG	34.4500	116.7830	05/22/1942	151829.0	0.0	4.00	0.001	-	85.3(137.3)
DMG	33.9670	116.4500	12/11/1948	161220.0	0.0	4.50	0.002	-	85.4(137.4)
PAS	33.1380	116.5010	10/10/1984	212258.9	11.6	4.50	0.002	-	85.5(137.5)
DMG	32.5000	1118.5500	02/24/1948	81510.0	0.0	5.30	0.004	II	85.9(138.2)
DMG	33,9670	1116.4330	12/05/1948	04235.0	0.0	4.601	0.002	-	86.3(138.9)
MGT	134.2000	1119.2000	06/16/1914		0.0	4.601	0.002	, _ i	86.4(139.0)
DMG	33,1670	1116 4670	08/01/1960	1193930 01	0.0		0 001	· · ·	86.6(139.3)
DMG	33 9630	1116 4250	101/13/1950	1 5 719 41	5 9	1 1 101	0.001	· · ·	86 7 (139 5)
DMG	134 0830	1116 4670	01/15/1950	1 0 1 1 9 . 4	0.0		0.001		87 1 (140 1)
DMC	134.0030	1116 4670	01/20/1934	1044 0.0	0.0		0.001		07.1(140.1)
DMG	122 4600	1116.4070	103/01/1942	175720 21	15 0	4.001	0.001	I – I	07.1(140.1)
PAS	133.4600	1116.3700	109/07/1984	11/5/30.3	15.2	4.10	0.001		07.1(140.2)
DMG	133.9330	116.4000	12/10/1948	204257.0	0.0	4.40	0.002	-	87.5(140.8)
DMG	34.4830	1118.9830	09/04/1942	63433.0	0.0	4.50	0.002	-	8/./(141.1)
DMG	34.4830	118.9830	09/03/1942	14 6 1.0	0.0	4.50	0.002	-	87.7(141.1)
GSP	33.9450	116.3990	07/05/1992	054938.2	3.0	4.00	0.001	-	87.8(141.2)
PAS	34.0220	116.4260	08/14/1975	8 849.8	10.9	4.00	0.001	(– I	87.8(141.3)
DMG	33.2670	116.4000	06/06/1940	2321 4.0	0.0	4.00	0.001	-	88.0(141.7)
DMG	34.0500	116.4330	02/08/1938	739 0.0	0.0	4.00	0.001	-	88.1(141.7)
DMG	34.4050	116.6670	07/02/1955	162938.5	10.0	4.20	0.001		88.3(142.1)
PAS	33.9850	116.4020	02/15/1985	232626.6	2.3	4.00	0.001	<u> </u>	88.3(142.2)
DMG	33.9330	116.3830	12/04/1948	234317.0	0.0	6.50	0.009	III	88.4(142.3)
DMG	34.0670	116.4320	12/04/1957	25144.0	3.7	4.30	0.002	-	88.5(142.5)
GSP	33.3990	116.3540	07/26/1997	031456.0	11.0	4.80	0.002		88.6(142.6)
GSP	33.9460	116.3790	04/24/1992	123605.7	10.0	4.101	0.001	I – I	88.9(143.0)
GSP	34.1520	116.4680	06/28/1992	224822.9	11.0	4.101	0.001	· - i	88.9(143.1)
DMG	33,4000	1119.4000	07/24/1947	1654 2.0	0.0	4.301	0.002	i – i	89.1(143.3)
DMG	33.1000	116.4500	111/23/1953	1339 7 0	0 0	4.301	0.002	i – i	89.2(143.6)
DMG	33,1670	1116 4170	12/05/1939	173352 01	0.0		0 001	. – I	89.3(143.6)
DMG	133 1670	1116 4170	10/11/1935				0.001	· · ·	89 3 (143 6)
DMG	133 1670	116 4170	107/10/1030				0.001	· · ·	89 3 (143 6)
DMC	123 0220	1116 2670	12/05/10/1930		0.0		0.001		00 2(143.0)
DMG	34 4010	1116 6410	12/03/1940	0 /2I.0 105117 CI	0.0	4.901	0.002		09.3(143.7)
PAS	134.4010	116.6410	02/10/19/5	125117.6	8.0	4.40	0.002	1	09.3(143.0)
GSP	34.0890	116.4260	06/28/1992	143906.9	0.0	4.301	0.002	-	89.4(143.9)
GSP	34.0950	116.4270	06/28/1992	211316.5	3.0	4.601	0.002	-	89.5(144.0)
DMG	33.0970	116.4440	08/18/1959	215221.3	17.3	4.30	0.002	-	89.6(144.2)
DMG	34.0000	116.3830	05/05/1944	134715.0	0.0	4.00	0.001	_	89.7(144.3)
DMG	33.3430	116.3460	04/28/1969	232042.9	20.0	5.80	0.005	II	89.8(144.5)
PAS	34.3820	116.6130	06/11/1984	222110.4	1.8	4.00	0.001	-	89.8(144.5)
GSP	34.0960	116.4170	07/18/1992	000611.2	2.0	4.00	0.001	-	90.1(144.9)
GSP	34.0920	116.4140	12/21/1992	114402.9	3.0	4.00	0.001	- I	90.1(145.0)
DMG	33.9330	116.3500	12/05/1948	04032.0	0.0	4.40	0.002	-	90.3(145.3)
DMG	34.6000	118.9000	05/18/1940	91512.0	0.0	4.00	0.001	-	90.3(145.3)
GSP	34.1390	116.4310	06/28/1992	123640.6	10.0	5.10	0.003	II	90.5(145.6)

	I	I		TIME	1		SITE	SITE	APPROX.
FILE	LAT.	LONG.	, I DATE	UTC)	DEPTH	OUAKE	ACC.	MM	DISTANCE
CODE	NORTH	WEST		H M Sec	(km)	MAG.	a	INT.	mi [km]
	++-	+		+ -	-+		++		
DMG	134.7000	1117.0000	07/16/1916	11230 0.01	0.0	4.001	0.001	1 - 1	90.5(145.6)
DMG	34.7000	1117.0000	07/16/1916		0.0	4.501	0.002	 I – I	90.5(145.6)
GSP	34 6000	1116 8400	06/04/1989	213358 1	2 0		0 002	· -	90.5(145.6)
DMG		1116 4170	06/04/1940	1103656 01			0 001		90.5(145.7)
DMG		1116 4170	10/21/1940	64933 01			0.002	· - I	90.5(145.7)
DMG	33,2830	1116.3500	104/13/1949	75336 01	0.0	4.101	0.001	 	90.5(145.7)
GSP	34 0300	116 3790	106/28/1992				0.001	· · ·	90.5(145.7)
GSP	34 1120	1116 4150	107/28/1992	1182703 9			0.001		90 6(145 8)
CSP	34.0990	1116 4020	109/15/1002	102/03.3			0.002	· · ·	90.7(145.9)
DMC	133 1930	1116 3930	10/11/10/0	02919.7			0.002	· · ·	90.7(146.0)
DMG	134 5410	1110.0000	10/14/1949	02925.0			0.001		90.7(146.0)
COD	134.3410	1116 4100	106/12/1904	1 02/52.4			0.001		90.7(140.0)
GSP	134.1110	1116.4100	106/28/1992	1135045.7			0.002		90.0(140.1)
GSP	133.9400	1116.3410	05/04/1992	011602.0			0.001		90.9(140.3)
DMG	134.0170	1116.3670	106/06/1940	235637.2			0.002		90.9(140.3)
DMG	33.9580	1116.3460	101/08/1952	63427.4	11.4		0.002		90.9(146.3)
GSP	34.0040	1116.3610	106/30/1992	143811.6	0.0	4.80	0.002		91.0(146.4)
GSP	34.1080	1116.4040	106/29/1992	141338.8	9.0	5.401	0.004	_	91.1(146.5)
GSP	34.1060	1116.4020	106/29/1992	140837.7	11.0	4.90	0.002	-	91.1(146.6)
GSP	33.9510	1116.3380	105/18/1992	154418.0	/.0	4.90	0.002	-	91.2(146.8)
GSP	34.0690	116.3820	07/07/1992	082103.1	3.0	[4.00]	0.001	-	91.3(146.9)
DMG	34.6670	118.8330	01/24/1950	215659.0	0.0	4.00	0.001	-	91.5(147.2)
GSP	34.0610	1116.3740	08/11/1992	061117.3	0.0	4.30	0.001	I - I	91.5(147.3)
GSP	34.0570	116.3710	06/28/1992	160953.9	3.0	4.10	0.001	-	91.6(147.4)
GSP	33.1100	116.4000	04/01/1984	071702.3	11.0	4.00	0.001	-	91.6(147.4)
GSP	33.9470	116.3300	09/09/1992	125045.1	5.0	4.30	0.001	-	91.6(147.4)
GSP	34.0340	1116.3600	05/14/1999	105235.2	1.0	4.20	0.001	-	91.7(147.5)
DMG	33.4000	116.3000	02/09/1890	12 6 0.0	0.0	6.30	0.007	II	91.7(147.5)
DMG	33.9850	116.3400	02/01/1957	75215.4	11.0	4.60	0.002	-	91.8(147.7)
GSP	34.1990	116.4390	09/05/1995	202718.4	0.0	4.40	0.002	-	91.8(147.7)
GSP	34.0820	116.3780	07/06/1992	194137.9	3.0	4.40	0.002	-	91.8(147.7)
GSG	33.9430	116.3250	04/23/1992	052316.2	5.0	4.00	0.001	-	91.8(147.8)
GSP	34.1270	116.3970	06/30/1992	000608.5	2.0	4.30	0.001	1 - 1	91.9(147.9)
GSP	34.0970	116.3820	07/01/1992	070149.2	0.0	4.30	0.001	-	91.9(148.0)
GSP	34.0620	116.3660	05/14/1999	075403.2	1.0	4.90	0.002	-	92.0(148.0)
GSN	34.2010	116.4360	06/28/1992	115734.1	1.0	7.60	0.021	IV	92.0(148.1)
GSP	34.1020	116.3830	08/04/1992	190612.3	0.0	4.00	0.001	-	92.0(148.1)
GSP	34.1980	116.4320	07/20/1992	040822.6	0.0	4.10	0.001	-	92.1(148.2)
DMG	33.7830	116.2830	03/04/1937	16 4 0.0	0.0	4.00	0.001	-	92.1(148.3)
GSP	34.3410	116.5290	06/28/1992	124053.5	6.0	5.20	0.003	I	92.2(148.3)
PAS	34.3020	116.4990	03/31/1979	016 8.6	0.1	4.20	0.001	-	92.2(148.3)
DMG	33.2910	116.3170	03/19/1966	142156.0	10.9	4.00	0.001	-	92.2(148.5)
GSP	34.0640	116.3610	09/15/1992	084711.3	9.0	5.20	0.003	I I	92.3(148.5)
MGI	32.7000	116.7000	03/21/1918	2325 0.0	0.0	4.00	0.001	i - 1	92.3(148.5)
GSP	33.9430	1116.3150	05/06/1992	023843.3	7.0	4.50	0.002	1 - 1	92.4(148.7)
GSP	34.1620	116.4050	06/28/1992	132605.1	6.0	4.90	0.002	1 -	92.5(148.8)
GSP	34.0580	1116.3550	06/28/1992	221312.0	7.0	I 4.001	0.001		92.5(148.8)
GSP	33.9570	116.3170	04/23/1992	022529.9	11.0	4.60	0.002	-	92.5(148.9)
GSP	34.1710	116.4090	06/30/1992	151905.0	0.0	4.00	0.001	-	92.5(148.9)
GSP	34.0920	116.3690	107/06/1992	120059.2	1 1.0	4.50	0.002	-	92.5(148.9)
GSP	33.9610	1116.3180	104/23/1992	045023.0	1 12.0	6.10	0.006	III	92.5(148.9)
DMG	33.3150	1116.3050	04/09/1968	11831 3 8	1 12 6	4.70	0.002		92.5(148.9)
DMG	133.3330	1116.3000	08/06/1933	332 0 0	1 0 0	4 70	0.002	_	92.5(148.9)
DMG	133.3330	1116.3000	08/05/1933	2331 0 0		4 40	0.002		92.5(148.9)
	,		, , ,	,					

EARTHQUAKE SEARCH RESULTS

	I	ł	I	TTME.		1	SITE	SITE	APPROX.
FILE	I I.A.T	L LONG	, I DATE		DEDTH	UITARE	ACC	I MM I	DISTANCE
CODE	I NORTH	WEST			/km)			ן דארד דארד	mi [km]
CODE					(KIII)	MAG.	. y	1 14 1 •	
DMC		+110 2500			-+				
DMG	134.1500	1119.3500	108/22/1950	224/58.0	0.0	4.201	0.001		92.6(149.0)
GSP	33.9530	1116.3140	11/2//1996	014243.8	6.0	4.10	0.001	-	92.6(149.0)
GSP	33.9510	116.3110	04/26/1992	062608.0	0.0	4.201	0.001	-	92.7(149.2)
PDP	33.9370	116.3060	07/25/1992	043160.0	5.0	4.901	0.002	-	92.8(149.3)
GSP	34.2390	116.4430	06/29/1992	030156.4	7.0	4.40	0.002	-	92.8(149.4)
DMG	33.0020	116.4360	07/02/1957	65638.5	12.8	4.10	0.001	-	92.8(149.4)
GSP	33.9330	116.3020	04/27/1992	031119.3	0.0	4.20	0.001	-	92.9(149.6)
GSP	33.9420	116.3040	05/04/1992	161949.7	12.0	4.80	0.002	-	93.0(149.6)
DMG	33.3000	116.3000	01/04/1940	8 711.0	0.0	4.001	0.001	-	93.1(149.7)
DMG	33.0000	116.4330	06/04/1940	1035 8.3	0.0	5.101	0.003	I	93.1(149.7)
GSG	34.0120	1116.3250	04/23/1992	051009.4	3.0	4.601	0.002	-	93.1(149.8)
GSP	33.9050	1116.2880	05/07/1995	110333.01	10.0	4.801	0.002	–	93.3(150.1)
DMG	134.0000	1116.3170	06/06/1940	222115.1	0.0	4.30	0.001	. – .	93.3(150.2)
GSP	134.0500	1116.3350	04/26/1992	172138.0	0.0	4.301	0.001	 I - I	93.4(150.3)
GSP	34.0120	1116 3190	11/20/1994	043143 5	6.0		0 001	. – I	93 4 (150.4)
GSP	133 9020	1116 2840	117/20/1994	191436 2	9.0		0.001	· · ·	93.5(150.4)
DMG	133 6670	1119 5000	111/30/1030	64251 01	0.0		0.000	· · ·	93 6(150 7)
COD	134 0290	1116 2210	111/30/1939	04251.0	0.0		0.001		93.0(150.7)
GSF	134.0290	116.3210	108/21/1993	014638.4	9.0		0.003	-	93.7(150.8)
GSP	134.2450	1116.4290	10//08/1993	225/44.9	2.0	4.001	0.001		93.7(150.8)
MGI	33.7500	1116.2500	111/19/191/	1/30 0.0	0.0	4.00	0.001	-	93.8(150.9)
DMG	33.4080	1116.2610	03/25/193/	1649 1.8	10.0	6.00	0.006	<u> </u>	93.8(151.0)
PAS	34.2570	116.4350	07/13/19/9	226 3.5	5.0	4.00	0.001	-	93.8(151.0)
DMG	33.2670	119.4500	11/18/1947	2159 3.0	0.0	5.00	0.003	-	93.8(151.0)
DMG	34.0670	116.3330	05/18/1940	72132.7	0.0	5.00	0.003	-	93.9(151.0)
DMG	34.0670	116.3330	05/18/1940	55120.2	0.0	5.20	0.003	I	93.9(151.0)
DMG	34.1000	119.4000	05/19/1893	035 0.0	0.0	5.50	0.004	I	93.9(151.2)
DMG	34.0330	116.3170	06/11/1940	195118.1	0.0	4.40	0.002	-	94.0(151.2)
GSG	34.1570	116.3730	06/29/1992	103657.8	5.0	4.00	0.001	-	94.0(151.3)
DMG	33.1210	116.3490	05/25/1971	10 252.9	8.0	4.10	0.001	-	94.1(151.4)
GSP	33.8760	116.2670	06/29/1992	160142.8	1.0	5.20	0.003	I	94.1(151.4)
GSP	34.2940	116.4530	06/28/1992	173121.5	6.0	4.10	0.001	-	94.2(151.5)
DMG	34.5000	119.1170	11/17/1954	23 351.0	0.0	4.40	0.002	-	94.2(151.5)
DMG	34.0830	116.3330	06/02/1940	61310.2	0.0	4.50	0.002	-	94.2(151.6)
DMG	34.0830	116.3330	06/01/1940	527 1.2	0.0	4.70	0.002	-	94.2(151.6)
GSP	34.3010	116.4520	09/28/1997	155723.0	7.0	4.40	0.002	-	94.4(152.0)
DMG	34.1000	116.3330	06/01/1940	65428.0	0.0	4.30	0.001	-	94.6(152.3)
MGI	34.3000	119.3000	05/01/1904	1830 0.0	0.0	4.60	0.002	-	94.7(152.4)
MGI	34.3000	119.3000	09/28/1926	1749 0.0	0.0	4.00	0.001	-	94.7(152.4)
MGI	34.3000	119.3000	05/15/1927	1120 0.0	0.0	4.00	0.001	-	94.7(152.4)
PAS	34.4220	116.5420	07/18/1985	14 525.8	6.0	4.201	0.001	·	94.7(152.4)
DMG	34.0670	1116.3170	05/18/1940	6 430.6	0.0	4.601	0.002	. – I	94.7(152.4)
GSP	33.9900	116.2870	05/02/1992	124641.4	4.0	4.10	0.001	. – I	94.8(152.5)
DMG	33.2000	116.3000	05/12/1930	414 0.01	0.0	4.001	0.001	. – I	94.9(152.7)
GSP	33.9910	1116.2840	104/23/1992	185603 01	3 0		0.002	, . – .	94.9(152.8)
GSP	34 3320	1116 4620	07/01/1992	1074029 91	9.0	5 401	0 003	, т) т і	95 1 (153.0)
GSP	34.3420	116.4670	07/07/1992	220928 31	2.0	4.401	0.002		95.2(153.2)
GSP	34 3130	116 4440	107/02/1002	001622 4	6.0		0 001		95 3 (153 3)
PAS	34 3090	116 4400	103/15/1070	2017/0 01	2.0		0 002	· · ·	95 3 (153 4)
GSP	133 9920	116 27/0	108/07/1004	151026 01	2.0		0.002	· · ·	95 5(153 7)
DMG	133 9920	119 1750	108/06/1072	1232017 01	16.0		0.001		95 6(153 8)
DMC	133 0170	116 2500	100/00/19/3	1232311.01	10.9		0.002		95.6(153.0)
DMC	133 0300	1116 2610	100/10/1057	117 I 0.01	0.0		0.001		95.0(153.0)
CSD	13/ 1750	1116 2500	106/11/1000	1211032.2 1002410 01	0.0	4.10	0.001	. – .	95.7(153.9)
JUD	D4.1/00	1110.0000	100/11/1992	ロロレムタエラ・ノー	0.0	4.301	0.001		

EARTHQUAKE SEARCH RESULTS

_____**__**_

	1	I		TIME		L I	SITE	ISITE	APPROX.
FILE	LAT.	LONG.	DATE	(UTC)	DEPTH	OUAKE	ACC.	MM	DISTANCE
CODE	NORTH	WEST		H M Sec	(km)	MAG		ITNT. I	mi [km]
	++-	+	 +	+	-+	+	9 ++		
PAS	134 3270		103/15/1979	121 716 51	. 2 5	5 201	0 003	і ті	957(154.0)
DMG	33 9170	1119 5000	08/26/1954	11348 3 01	0.0		0.003	· · ·	95 8 (154 2)
GSP	134 2680	1116 4020	06/16/1994	1162427 51	3.0		0.002	, , , , ,	95 8 (154 2)
DAG	134.3300	1116 4430	103/15/1070	123 759 21	2.0		0.002	· · ·	95.0(154.2)
CSD	134 2720	1116 4030	03/13/19/9	1013934 21	2.0	4.00 1 10	0.002		95.9(154.5)
DMC	134 0930	1116 3000	12/11/1992	1 5 350 51	2.0		0.001	1 1 1 T 1	96 0(154 5)
DAG	124.0050	1116 4520	03/16/1940	1212425 61	1.5	J.40 4 60	0.003		96.0(154.5)
PAS	134.3400	116.4550	03/13/19/9	213425.0	1.5	4.50	0.002	~	90.1(154.0)
DMG	133.2350	116.2660	04/09/1968	93833.0	5.2		0.001	- 	90.1(154.0)
626	133.9820	1117 5000	05/12/1992	1023111.0	6.0		0.001		96.1(154.7)
T-A	32.2500	117.5000	01/13/18//		0.0		0.002		96.1(154.7)
DMG	34.3000	116.4170	08/07/1942	15314.0	0.0	4.00	0.001	1 - 1	96.1(154.7)
DMG	34.3000	116.4170	08/07/1942	12358.0	0.0	4.00	0.001	-	96.1(154.7)
DMG	34.3000	116.41/0	08/07/1942	11533.0	0.0	4.50	0.002	-	96.1(154.7)
DMG	33.3330	116.2360	10/05/1962	1529 2.6	13.9	4.10	0.001	-	96.2(154.7)
DMG	34.0500	116.2830	08/01/1940	193140.0	0.0	4.00	0.001	-	96.2(154.8)
DMG	34.0500	116.2830	06/14/1940	215850.0	0.0	4.00	0.001	-	96.2(154.8)
DMG	34.0500	116.2830	05/19/1940	193941.0	0.0	4.00	0.001	-	96.2(154.8)
DMG	34.0500	116.2830	06/01/1940	55646.0	0.0	4.00	0.001	-	96.2(154.8)
DMG	34.0500	116.2830	05/27/1940	32727.0	0.0	4.00	0.001	-	96.2(154.8)
DMG	34.0500	116.2830	06/24/1940	163936.0	0.0	4.00	0.001	-	96.2(154.8)
DMG	34.0500	116.2830	05/22/1940	63137.0	0.0	4.00	0.001	-	96.2(154.8)
DMG	34.0500	116.2830	05/19/1940	226 2.0	0.0	4.50	0.002	i – I	96.2(154.8)
DMG	34.0500	116.2830	08/04/1940	181520.0	0.0	4.00	0.001	–	96.2(154.8)
DMG	34.0500	116.2830	05/22/1940	1410 5.0	0.0	4.00	0.001	-	96.2(154.8)
DMG	34.0500	116.2830	05/19/1940	22730.0	0.0	4.50	0.002	-	96.2(154.8)
DMG	34.0500	116.2830	05/19/1940	35145.0	0.0	4.00	0.001	-	96.2(154.8)
DMG	34.0500	116.2830	06/08/1940	171032.0	0.0	4.00	0.001	-	96.2(154.8)
DMG	34.0500	116.2830	05/18/1940	134719.0	0.0	4.50	0.002	-	96.2(154.8)
DMG	34.0500	116.2830	06/06/1940	234849.0	0.0	4.00	0.001	-	96.2(154.8)
DMG	33.1500	119.4500	01/05/1940	62052.0	0.0	4.001	0.001	-	96.2(154.9)
DMG	33.1500	119.4500	06/17/1934	243 0.0	0.0	4.00	0.001	~	96.2(154.9)
DMG	33.2790	116.2490	01/07/1966	191023.0	-1.7	4.00	0.001	-	96.3(154.9)
DMG	34.3810	116.4740	01/06/1964	234712.8	12.3	4.50	0.002	-	96.3(154.9)
DMG	33.3330	116.2330	06/09/1942	5 633.0	0.0	4.00	0.001	-	96.3(155.0)
MGI	33.7000	116.2000	08/12/1917	111 0 0.0	0.0	4.00	0.001	-	96.4(155.1)
PAS	34.2300	116.3630	03/18/1979	2253 2.7	3.4	4.20	0.001	i - I	96.6(155.5)
DMG	32.9670	116.3830	10/31/1942	115 758.0	0.0	4.00	0.001	-	96.7(155.6)
DMG	33.7830	116.2000	10/31/1943	131210.0	0.0	4.50	0.002	-	96.9(155.9)
GSP	34.3770	1116.4580	08/08/1992	1153743.3	2.0	4.401	0.001	i – i	96.9(155.9)
DMG	33.3100	1116.2240	05/22/1968	132655.4	7.5	4.401	0.001	i – i	97.2(156.4)
MGI	34.0000	1119.5000	05/03/1926	1353 0.0	0.0	4.30	0.001	i – i	97.2(156.4)
DMG	134.0000	1119.5000	03/19/1905	440 0.0	0.0	4.001	0.001	i – i	97.2(156.4)
DMG	134.0000	1119.5000	02/18/1926	1818 0.0		5.001	0.002	i – i	97.2(156.4)
GSP	134 3830	1116 4520	07/02/1992	1051632 2			0.001	. – I	97.4(156.8)
GSG	134 4880	1116 5400	06/29/1992	1015808 8	5.0	4 101	0 001	. – I	97.6(157.0)
GSP	134 4050	116 4640	02/15/1992	1075933 2	5.0	4 201	0,001		97.7(157.2)
PAS	134 3200	116 3090	03/16/1070	172650 1	5.0		0.001		98.1(157.8)
DMC	133 0530	1116 3060	103/10/19/9	1201539.1			0 001		98 1 (157 9)
CCD	134 1110	116 4610	104/02/190/	1201050.0		1 1 001	0.001		98 2 (158 0)
	134 6200	1110 7500	111/27/1052	1 0 0 0 0			0.002	1 111	98.2(150.0)
DMC	134.0300	1110.0000	111/2//1052				0.012	1 111	00.2(150.0)
DMG	134.01/0	1116 2220	102/20/1930				0.002		00.2(100.1)
DMG	134.2330	1110.3330	105/11/194/	1 5 620.0		4.90	0.002	-	00.3(100.1)
DMG	34.6830	1113.0000	104/06/1943	223624.0	0.0	4.001	0.001	-	30.3(130.2)

						<u>-</u>			
ETTE				TIME			SITE	SITE	APPROX.
FILE	LAT.	LONG.	DATE	(UTC)	DEPTH	QUAKE	ACC.		DISTANCE
CODE	I NORTH	WEST		H M Sec	(KM)	MAG.	g	1 T N.T.	
MGT	134.4000	119 3000	108/12/1925	1845 0 01	0 0	4 001	+ 0 001	i – I	98.3(158.3)
DMG	133.2000	1116.2330	104/05/1942	92039.01	0.0	4.001	0.001	i – I	98.6(158.7)
GSP	134.6020	116.6350	10/02/1992	071957.41	3.0	4.301	0.001	i – i	98.6(158.7)
DMG	33.3490	116.1880	05/19/1969	144033.01	8.6	4.50	0.002	i – i	98.7(158.8)
DMG	34.5780	116.6030	06/01/1937	154144.31	10.0	4.00	0.001	1 - 1	98.8(159.1)
GSP	34.5950	116.6220	106/28/1992	163210.21	0.0	4.40	0.001	-	98.8(159.1)
DMG	34.7170	118.9670	06/11/1935	1810 0.0	0.0	4.00	0.001	1 - 1	98.9(159.2)
GSP	34.4570	116.4760	07/06/1992	180636.3	0.0	4.301	0.001	-	99.2(159.6)
DMG	34.7000	119.0000	10/23/1916	254 0.0	0.0	5.50	0.003	I	99.2(159.7)
GSP	34.4560	1116.4690	08/31/1992	092540.6	11.0	4.30	0.001	-	99.5(160.1)
DMG	34.4000	116.4170	11/10/1947	22255.0	0.0	4.50	0.002	-	99.7(160.5)
GSP	34.6440	116.6560	06/30/1992	172629.7	0.0	4.30	0.001		99.8(160.7)
DMG	33.2830	1116.1830	03/19/1954	95429.0	0.0	6.201	0.006	1 II	99.9(160.8)
DMG	133.2830	1116 1030	03/19/1954	1102610.01	0.0	4.001	0.001		99.9(160.8)
DMG	133 2830	1116 1930	103/20/1954	42920.0 6 353 0	0.0	4.101	0.001		99.9(160.8)
DMG	133,2830	1116 1830	103/23/1954	0 333.0 41450 0	0.0	5 101	0.001		99 9(160 8)
DMG	133.2830	1116,1830	103/19/1954	1021170	0.0	5 501	0.002		99.9(160.8)
DMG	33.2830	1116.1830	03/19/1954	95556.01	0.0	5.001	0.002		99.9(160.8)
DMG	33.2830	116.1830	03/19/1954	957 7.01	0.0	4.60	0.002	i – i	99.9(160.8)
DMG	33.2830	116.1830	03/19/1954	95748.0	0.0	4.00	0.001	1 - 1	99.9(160.8)
DMG	33.2830	116.1830	03/19/1954	10 139.01	0.0	4.20	0.001	1 - 1	99.9(160.8)
DMG	33.2830	116.1830	03/19/1954	101522.0	0.0	4.50	0.002	-	99.9(160.8)
DMG	33.2830	116.1830	03/19/1954	101957.0	0.0	4.50	0.002	1 - 1	99.9(160.8)
DMG	33.2830	116.1830	03/19/1954	14 057.0	0.0	4.104	0.001	-	99.9(160.8)
DMG	33.2830	1116.1830	10/26/1944	225410.0	0.0	4.20	0.001	-	99.9(160.8)
DMG	133.2830	116.1830	03/19/1954	13 8 4.0	0.0	4.30	0.001	-	99.9(160.8)
DMG	33.2830	116.1830	03/19/1954	143750.0	0.0	4.00	0.001		99.9(160.8)
DMG	33.2830	116.1830	03/20/1954	41919.0	0.0	4.90	0.002	-	99.9(160.8)
GSP	34.6430	110.0530	06/30/1992	200025.4	0.01	4.30	0.001	-	99.9(160.8)
* * * * *	******	* * * * * * * * * *	* * * * * * * * * * * *	* * * * * * * * * *	*****	******	******	* * * * * *	*****
-END	OF SEAR	CH- 984	EARTHOUAKES	S FOUND WT	THIN T	HE SPE	CIFIED	SEARCH	AREA.
			Bintingoint				011100	02111.01.	
TIME	PERIOD	OF SEARCH	: 1800 TC	1999					
LENG	TH OF SEA	ARCH TIME:	: 200 yea	ars					
THE H	THE EARTHQUAKE CLOSEST TO THE SITE IS ABOUT 1.8 MILES (2.9 km) AWAY.								
LARGI	LARGEST EARTHQUAKE MAGNITUDE FOUND IN THE SEARCH RADIUS: 7.6								
LARGEST EARTHQUAKE SITE ACCELERATION FROM THIS SEARCH: 0.420 g									
COEFFICIENTS FOR GUTENBERG & RICHTER RECURRENCE RELATION: a-value= 3.944 b-value= 0.818 beta-value= 1.884									

TABLE OF MAGNITUDES AND EXCEEDANCES:

Earthquake Magnitude	Number of Times Exceeded		Cumulative No. / Year
4.0	984	+ 	4 94472
4.5	374	i	1.87940
5.0	137	Ì	0.68844
5.5	47	I.	0.23618
6.0	25		0.12563
6.5	11		0.05528
7.0	5		0.02513
7.5	1		0.00503

	LEGEND NB/MW-8 B-5 TS-5 Af Qt Tm 	
GEOLOGIC CROSS-SECTION A-A' proposed newport beach city hall newport beach, california	40 APPROXIMATE LOCATION OF HOLLOW STEM AUGER BORING SHOWING TOTAL DEPTH AND DEPTH TO GROUNDWATER ENCOUNTERED DURING DRILLING, MW INDICATES BORING COMPLETED WITH GROUNDWATER MONITORING WELL INSTALLED, (CURRENT INVESTIGATION) APPROXIMATE LOCATION OF HOLLOW STEM AUGER BORING SHOWING TOTAL DEPTH AND DEPTH TO GROUNDWATER ENCOUNTERED DURING DRILLING (LEIGHTON, 2008) APPROXIMATE LOCATION OF TEST PIT SHOWING TOTAL DEPTH (LEIGHTON, 2008) ARTIFICIAL FILL, QUERIED WHERE UNCERTAIN QUATERNARY TERRACE DEPOSITS TERTIARY AGE MONTEREY FORMATION-BEDROCK APPROXIMATE LOCATION OF GEOLOGIC CONTACT, QUERIED WHERE UNCERTAIN APPROXIMATE LOCATION OF GEOLOGIC CONTACT, QUERIED WHERE UNCERTAIN APPROXIMATE LOCATION OF GROUNDWATER SURFACE ENCOUNTERED DURING DRILLING, QUERIED WHERE UNCERTAIN	ELEVATION (FEET) ABOVE MSL 200 A NB-7 proj \pm 80' proj \pm 94' proj
Proj: 602184-002 Eng./Geol. VMC/ELB P:\DRAFTING\602184\002\OF_2009-04-20\PLA		B-2 = BA-1 = Proj I 64', Proj I 36', Proj I 30', Pro
Scale: 4:1"= Drafted By:		NB/M B-1 proj L IS-1 Proj L TS-1 S' o GW No GW GW GW

3 (05-26-09 9:27	': VMN		0	ELEVATION	(FEET)	ABOVE	MSL	0	0	
:36AM) Plotted by: btran	Date: 5/09 CP By: BQT									
Leighton		Plate 3								